Acquisition of Bidirectional Reflectance Factor Dataset Using a Micro Unmanned Aerial Vehicle and a Consumer Camera

نویسندگان

  • Teemu Hakala
  • Juha Suomalainen
  • Jouni I. Peltoniemi
چکیده

This paper describes a method for retrieving the bidirectional reflectance factor (BRF) of land-surface areas, using a small consumer camera on board an unmanned aerial vehicle (UAV) and introducing an advanced calibration routine. Images with varying view directions were taken of snow cover using the UAV. The vignetting effect was corrected from the images, and reflectance factor images were calculated using a calibrated white target as a reference. After spatial registration of the images using a corresponding point method, the target surface was divided into a grid, and a BRF was generated for each grid element. Lastly a model was fitted to the BRF dataset for data interpretation. The retrieved BRF were compared to parallel ground measurements. Comparison showed similar BRF and reflectance factor characteristics, which suggests that accurate measurements can be taken with cheap consumer cameras, if enough attention is paid to calibration of the images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment

Unmanned airborne vehicles (UAV) equipped with novel, miniaturized, 2D frame format hyperand multispectral cameras make it possible to conduct remote sensing measurements cost-efficiently, with greater accuracy and detail. In the mapping process, the area of interest is covered by multiple, overlapping, small-format 2D images, which provide redundant information about the object. Radiometric co...

متن کامل

The Zurich Urban Micro Aerial Vehicle

This paper presents a dataset recorded on-board a camera-equipped Micro Aerial Vehicle (MAV) flying within the urban streets of Zurich, Switzerland, at low altitudes (i.e., 5-15 meters above the ground). The 2 km dataset consists of time synchronized aerial high-resolution images, GPS and IMU sensor data, ground-level street view images, and ground truth data. The dataset is ideal to evaluate a...

متن کامل

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

The Potential Use of Rotor Wing Unmanned Aerial Vehicle for Large Scale Stream Mapping

Unmanned Aerial Vehicle (UAV) systems offered many advantages in several mapping applications such as slope mapping, geohazard studies, etc.This study utilizes UAV system for large scale stream mapping by using digital camera attached to the UAV.The digital camera combined with the UAV form a data acquisition system. This study only concentrates on one type of rotor wing UAV. It is becaue rotor...

متن کامل

A Practical UAV Remote Sensing Methodology to Generate Multispectral Orthophotos for Vineyards: Estimation of Spectral Reflectance Using Compact Digital Cameras

This paper explores the use of compact digital cameras to remotely estimate spectral reflectance based on unmanned aerial vehicle imagery. Two digital cameras, one unaltered and one altered, were used to collect four bands of spectral information (blue, green, red, and near-infrared [NIR]). The altered camera had its internal hot mirror removed to allow the sensor to be additionally sensitive t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010