A generalized method for transfecting root epidermis uncovers endosomal dynamics in Arabidopsis root hairs.
نویسندگان
چکیده
Progress in analysing the cellular functions of many structural proteins has accelerated through the use of confocal microscopy together with transient gene expression. Several methods for transient expression have been developed in the past few years, but their application has seen limited success beyond a few tractable species and tissues. We have developed a simple and efficient method to visualize fluorescent proteins in Arabidopsis root epidermis using co-cultivation of seedlings with Agrobacterium rhizogenes. The method is equally suitable for transient gene expression in other species, including Thellungiella, and can be combined with supporting molecular and biochemical analyses. The method promises significant advantages for study of membrane dynamics, cellular development and polar growth in root hairs without interference in the development of the plant. Since the method targets specifically the root epidermis, it also offers a powerful tool to approach issues of root-rhizosphere interactions, such as ion transport and nutrient acquisition. As a proof of principle, we carried out transfections with fluorescent markers for the plasma membrane (NpPMA2-GFP, Nicotiana plumbaginifolia L. Plasma Membrane H(+)-ATPase 2), the endoplasmic reticulum (YFP-HDEL), and the Golgi apparatus (sialyl transferase-GFP) to trace their distribution in growing Arabidopsis root hairs and epidermis. The results demonstrate that, in Arabidopsis root hairs, movement of the Golgi is faster than previously reported for tobacco leaf epidermal cells, consistent with the high secretory dynamics of the tip growing cell; they show a pattern to the endoplasmic reticulum within the cytoplasm that is more diffuse than found in tobacco leaf epidermis, and they confirm previous findings of a polarized distribution of the endoplasmic reticulum at the tip of growing root hairs.
منابع مشابه
Discriminative gene co-expression network analysis uncovers novel modules involved in the formation of phosphate deficiency-induced root hairs in Arabidopsis
Cell fate and differentiation in the Arabidopsis root epidermis are genetically defined but remain plastic to environmental signals such as limited availability of inorganic phosphate (Pi). Root hairs of Pi-deficient plants are more frequent and longer than those of plants grown under Pi-replete conditions. To dissect genes involved in Pi deficiency-induced root hair morphogenesis, we construct...
متن کاملReorganization and in vivo dynamics of microtubules during Arabidopsis root hair development.
Root hairs emerge from epidermal root cells (trichoblasts) and differentiate by highly localized tip growth. Microtubules (MTs) are essential for establishing and maintaining the growth polarity of root hairs. The current knowledge about the configuration of the MT cytoskeleton during root hair development is largely based on experiments on fixed material, and reorganization and in vivo dynamic...
متن کاملSNARE VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole and is essential for cell wall organization and root hair growth in arabidopsis
BACKGROUND AND AIMS Root hairs are responsible for water and nutrient uptake from the soil and their growth is responsive to biotic and abiotic changes in their environment. Root hair expansion is a polarized process requiring secretory and endosomal pathways that deliver and recycle plasma membrane and cell wall material to the growing root hair tip. In this paper, the role of VTI13 (AT3G29100...
متن کاملMapping of Membrane Lipid Order in Root Apex Zones of Arabidopsis thaliana
In this study, we used the fluorescence probe, Di-4-ANEPPDHQ, to map the distribution of membrane lipid order in the apical region of Arabidopsis roots. The generalized polarization (GP) value of Di-4-ANEPPDHQ-stained roots indicated the highest lipid order in the root transition zone (RTZ). The cortical cells have higher lipid order than the epidermal cells in same regions, while the developin...
متن کاملComplexity and specificity of the maize (Zea mays L.) root hair transcriptome
Root hairs are tubular extensions of epidermis cells. Transcriptome profiling demonstrated that the single cell-type root hair transcriptome was less complex than the transcriptome of multiple cell-type primary roots without root hairs. In total, 831 genes were exclusively and 5585 genes were preferentially expressed in root hairs [false discovery rate (FDR) ≤1%]. Among those, the most signific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 51 2 شماره
صفحات -
تاریخ انتشار 2007