Independent Domestication of Two Old World Cotton Species
نویسندگان
چکیده
Domesticated cotton species provide raw material for the majority of the world's textile industry. Two independent domestication events have been identified in allopolyploid cotton, one in Upland cotton (Gossypium hirsutum L.) and the other to Egyptian cotton (Gossypium barbadense L.). However, two diploid cotton species, Gossypium arboreum L. and Gossypium herbaceum L., have been cultivated for several millennia, but their status as independent domesticates has long been in question. Using genome resequencing data, we estimated the global abundance of various repetitive DNAs. We demonstrate that, despite negligible divergence in genome size, the two domesticated diploid cotton species contain different, but compensatory, repeat content and have thus experienced cryptic alterations in repeat abundance despite equivalence in genome size. Evidence of independent origin is bolstered by estimates of divergence times based on molecular evolutionary analysis of f7,000 orthologous genes, for which synonymous substitution rates suggest that G. arboreum and G. herbaceum last shared a common ancestor approximately 0.4-2.5 Ma. These data are incompatible with a shared domestication history during the emergence of agriculture and lead to the conclusion that G. arboreum and G. herbaceum were each domesticated independently.
منابع مشابه
Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton.
A putative advantage of allopolyploidy is the possibility of differential selection of duplicated (homeologous) genes originating from two different progenitor genomes. In this note we explore this hypothesis using a high throughput, SNP-specific microarray technology applied to seed trichomes (cotton) harvested from three developmental time points in wild and modern accessions of two independe...
متن کاملGlobal analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense.
Gossypium barbadense is widely cultivated because of its extra-long staple cotton with superior luster, silkiness and high yield. These economically important traits were selected during initial domestication of an agronomically inferior wild ancestor, followed by millennia of human-mediated selection. To reveal the effects of this history on the cotton fiber transcriptome, we conducted compara...
متن کاملParallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium).
Cotton is remarkable among our major crops in that four species were independently domesticated, two allopolyploids and two diploids. In each case thousands of years of human selection transformed sparsely flowering, perennial shrubs into highly productive crops with seeds bearing the vastly elongated and abundant single-celled hairs that comprise modern cotton fiber. The genetic underpinnings ...
متن کاملDetecting multiple origins of domesticated crops.
C rop domestication has long been studied both as a model for understanding the process of evolution (1) and for gaining insights into the history of human civilization (2). In recent decades, a wealth of neutral molecular markers (e.g., SNPs, microsatellites, amplified fragment length polymorphisms) has become available for many crop species, permitting genomewide examinations of genetic diver...
متن کاملEvolutionary Conservation and Divergence of Gene Coexpression Networks in Gossypium (Cotton) Seeds
The cotton genus (Gossypium) provides a superior system for the study of diversification, genome evolution, polyploidization, and human-mediated selection. To gain insight into phenotypic diversification in cotton seeds, we conducted coexpression network analysis of developing seeds from diploid and allopolyploid cotton species and explored network properties. Key network modules and functional...
متن کامل