Hydrogen Bonding-Mediated Microphase Separation during the Formation of Mesoporous Novolac-Type Phenolic Resin Templated by the Triblock Copolymer, PEO-b-PPO-b-PEO
نویسندگان
چکیده
After blending the triblock copolymer, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-b-PPO-b-PEO) with novolac-type phenolic resin, Fourier transform infrared spectroscopy revealed that the ether groups of the PEO block were stronger hydrogen bond acceptors for the OH groups of phenolic resin than were the ether groups of the PPO block. Thermal curing with hexamethylenetetramine as the curing agent resulted in the triblock copolymer being incorporated into the phenolic resin, forming a nanostructure through a mechanism involving reaction-induced microphase separation. Mild pyrolysis conditions led to the removal of the PEO-b-PPO-b-PEO triblock copolymer and formation of mesoporous phenolic resin. This approach provided a variety of composition-dependent nanostructures, including disordered wormlike, body-centered-cubic spherical and disorder micelles. The regular mesoporous novolac-type phenolic resin was formed only at a phenolic content of 40-60 wt %, the result of an intriguing balance of hydrogen bonding interactions among the phenolic resin and the PEO and PPO segments of the triblock copolymer.
منابع مشابه
Rheological Study of Order-to-Disorder Transitions and Phase Behavior of Block Copolymer–Surfactant Complexes Containing Hydrogen-Bonded Small Molecule Additives
Dynamic mechanical measurements were used to investigate the effect of small molecule additives on the order-todisorder transitions (ODTs) of Pluronic, poly(ethylene oxide) (PEO)−poly(propylene oxide) (PPO)−PEO triblock copolymer surfactant melts. The small molecule additives contain multiple functional groups (carboxyl or hydroxyl), which selectively interact with the PEO component of Pluronic...
متن کاملFlexible Epoxy Resin Formed Upon Blending with a Triblock Copolymer through Reaction-Induced Microphase Separation
In this study, we used diglycidyl ether bisphenol A (DGEBA) as a matrix, the ABA block copolymer poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic F127) as an additive, and diphenyl diaminosulfone (DDS) as a curing agent to prepare flexible epoxy resins through reaction-induced microphase separation (RIMPS). Fourier transform infrared spectroscopy confirmed the existence of hydr...
متن کاملRelationships between the physicochemical properties of an amphiphilic triblock copolymers/DNA complexes and their intramuscular transfection efficiency
Poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer (PEO-PPO-PEO) based plasmid delivery systems are increasingly drawing attention in the field of nonviral gene transfer because of their proven in vivo transfection capability. They result from the simple association of DNA molecules with uncharged polymers. We examined the physicochemical properties of PEO-PPO-PEO/D...
متن کاملInteractions of charged porphyrins with nonionic triblock copolymer hosts in aqueous solutions.
The extent and locus of solubilization of guest and self-assembling surfactant host molecules in aqueous solutions are influenced by a variety of hydrophobic and hydrophilic interactions, as well as by more specific interactions between the various species present. By using a combination of two-dimensional heteronuclear 13C[1H] NMR correlation experiments with pulsed-gradient NMR diffusion and ...
متن کاملSmall-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.
The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic po...
متن کامل