Exponential Decay of Energy for Some Nonlinear Hyperbolic Equations with Strong Dissipation

نویسنده

  • Yaojun Ye
چکیده

Yaojun Ye Department of Mathematics and Information Science, Zhejiang University of Science and Technology, Hangzhou 310023, China Correspondence should be addressed to Yaojun Ye, [email protected] Received 14 December 2009; Revised 21 May 2010; Accepted 4 August 2010 Academic Editor: Tocka Diagana Copyright q 2010 Yaojun Ye. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The initial boundary value problem for a class of hyperbolic equations with strong dissipative term utt− ∑n i 1 ∂/∂xi |∂u/∂xi| ∂u/∂xi −aΔut b|u|r−2u in a bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set inW 0 Ω and showing the exponential decay of the energy of global solutions through the use of an important lemma of V. Komornik.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform energy decay rates of hyperbolic equations with nonlinear boundary and interior dissipation

We consider the problem of uniform stabilization of nonlinear hyperbolic equations, epitomized by the following three canonical dynamics: (1) the wave equation in the natural state space L2(Ω) × H(Ω), under nonlinear (and non-local) boundary dissipation in the Dirichlet B.C., as well as nonlinear internal damping; (2) a corresponding Kirchhoff equation in the natural state space [H(Ω) ∩H1 0 (Ω)...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Global solutions and exponential decay for a nonlinear coupled system of beam equations of Kirchhoff type with memory in a domain with moving boundary

In this paper we prove the exponential decay in the case n > 2, as time goes to infinity, of regular solutions for a nonlinear coupled system of beam equations of Kirchhoff type with memory and weak damping utt +∆ 2u−M(||∇u||2L2(Ωt) + ||∇v|| 2 L(Ωt) )∆u + ∫ t 0 g1(t− s)∆u(s)ds + αut + h(u− v) = 0 in Q̂, vtt +∆ v −M(||∇u||2L2(Ωt) + ||∇v|| 2 L(Ωt) )∆v + ∫ t 0 g2(t− s)∆v(s)ds + αvt − h(u− v) = 0 in...

متن کامل

Global Existence and Decay of Energy to Systems of Wave Equations with Damping and Supercritical Sources

This paper is concerned with a system of nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping terms. It is well-known that the presence of a nonlinear boundary source causes significant difficulties since the linear Neumann problem for the single wave equation is not, in general, well-posed in the finite-energy space H(Ω) × L(∂Ω...

متن کامل

Exponential energy decay and blow-up of solutions for a system of nonlinear viscoelastic wave equations with strong damping

with initial and Dirichlet boundary conditions. We prove that, under suitable assumptions on the functions gi, fi (i = 1, 2) and certain initial data in the stable set, the decay rate of the solution energy is exponential. Conversely, for certain initial data in the unstable set, there are solutions with positive initial energy that blow up in finite time. 2000 Mathematics Subject Classificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010