Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygen reduction reaction in alkaline electrolyte

نویسندگان

  • Gang Wu
  • Guofeng Cui
  • Deyu Li
  • Pei-Kang Shen
  • Ning Li
چکیده

Well-dispersed Co1.67Te2 nanoparticles supported on carbon black have been synthesized via a solidstate reaction using Co and Te precursors in an autoclave at elevated temperatures. Their oxygen reduction reaction (ORR) activity and selectivity as a function of heating temperatures in catalyst synthesis were evaluated by rotating disk (RDE) and ring-disk electrodes (RRDE). It was found that the best performing catalyst (CoTe/C-900) was synthesized at a temperature of 900 C, with regard to the most positive RDE onset ( 0.18 V vs Ag/AgCl) and half-wave potentials ( 0.35 V vs Ag/AgCl) as well as the lowest peroxide yield (ca. 5%) in alkaline solution (0.1 M KOH, pH 1⁄4 13). Meanwhile, welldefined limiting currents were reached in the mass transfer-controlled potential range at various rotating speeds, attesting to the high density and uniform distribution of ORR active sites on the catalyst. The average electron transfer number of ORR was determined to be 3.5 for the CoTe/C-900 catalyst by using a modified Koutecky–Levich equation, nearly providing a four-electron pathway for the ORR. A transition of the Tafel slope from ca. 60 mV/dec to ca. 120 mV/dec with overpotential is directly associated with oxide formation and their coverage variation onto catalysts, suggesting a change of the rate-determining step in the ORR mechanism from intermediate-migration to chargetransfer. Extensive physical characterizations including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS) were conducted for each CoTe/C sample prepared at various heating temperatures to provide insights into the origins of active sites, and Co1.67Te2 chalcogenide nanoparticles supported on carbon were found to be highly active toward ORR in alkaline electrolytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction

In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...

متن کامل

Oxygen Reduction Electrocatalysts Based on Coupled Iron Nitride Nanoparticles with Nitrogen-Doped Carbon

Aimed at developing a highly active and stable non-precious metal electrocatalyst for oxygen reduction reaction (ORR), a novel FexNy/NC nanocomposite—that is composed of highly dispersed iron nitride nanoparticles supported on nitrogen-doped carbon (NC)—was prepared by pyrolyzing carbon black with an iron-containing precursor in an NH3 atmosphere. The influence of the various synthetic paramete...

متن کامل

Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells

Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide...

متن کامل

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells

Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009