Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3.
نویسندگان
چکیده
Chronic hypoxia induces pulmonary hypertension and right ventricular (RV) hypertrophy. Nitric oxide (NO) has been proposed to modulate the pulmonary vascular response to hypoxia. We investigated the effects of congenital deficiency of endothelial NO synthase (NOS3) on the pulmonary vascular responses to breathing 11% oxygen for 3-6 wk. After 3 wk of hypoxia, RV systolic pressure was greater in NOS3-deficient than in wild-type mice (35+/-2 vs 28+/-1 mmHg, x+/-SE, P < 0.001). Pulmonary artery pressure (PPA) and incremental total pulmonary vascular resistance (RPI) were greater in NOS3-deficient than in wild-type mice (PPA 22+/-1 vs 19+/-1 mmHg, P < 0.05 and RPI 92+/-11 vs 55+/-5 mmHg.min.gram.ml-1, P < 0.05). Morphometry revealed that the proportion of muscularized small pulmonary vessels was almost fourfold greater in NOS3-deficient mice than in wild-type mice. After 6 wk of hypoxia, the increase of RV free wall thickness, measured by transesophageal echocardiography, and of RV weight/body weight ratio were more marked in NOS3-deficient mice than in wild-type mice (RV wall thickness 0.67+/-0.05 vs 0.48+/-0.02 mm, P < 0.01 and RV weight/body weight ratio 2.1+/-0.2 vs 1.6+/-0.1 mg. gram-1, P < 0.05). RV hypertrophy produced by chronic hypoxia was prevented by breathing 20 parts per million NO in both genotypes of mice. These results suggest that congenital NOS3 deficiency enhances hypoxic pulmonary vascular remodeling and hypertension, and RV hypertrophy, and that NO production by NOS3 is vital to counterbalance pulmonary vasoconstriction caused by chronic hypoxic stress.
منابع مشابه
Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension.
BACKGROUND Pulmonary hypertension is a fatal disease characterized by vasoconstriction and vascular remodeling. Loss of endothelial nitric oxide bioavailability is implicated in pulmonary hypertension pathogenesis. Recent evidence suggests that the cofactor tetrahydrobiopterin (BH4) is an important regulator of nitric oxide synthase enzymatic function. METHODS AND RESULTS In the hph-1 mouse w...
متن کاملPerinatal Nitric Oxide Therapy Prevents Adverse Effects of Perinatal Hypoxia on the Adult Pulmonary Circulation
Adverse events in utero are associated with the occurrence of chronic diseases in adulthood. We previously demonstrated in mice that perinatal hypoxia resulted in altered pulmonary circulation in adulthood, with a decreased endothelium-dependent relaxation of pulmonary arteries, associated with long-term alterations in the nitric oxide (NO)/cyclic GMP pathway. The present study investigated whe...
متن کاملActivation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling.
BACKGROUND Severe pulmonary hypertension is a disabling disease with high mortality, characterized by pulmonary vascular remodeling and right heart hypertrophy. Using wild-type and homozygous endothelial nitric oxide synthase (NOS3(-/-)) knockout mice with pulmonary hypertension induced by chronic hypoxia and rats with monocrotaline-induced pulmonary hypertension, we examined whether the solubl...
متن کاملRole of VEGF-B in the lung during development of chronic hypoxic pulmonary hypertension.
Angiogenic factors exert protective effects on the lung. To investigate the effect of VEGF-B, a factor coexpressed in the lung with VEGF-A, we assessed chronic hypoxic pulmonary hypertension in VEGF-B knockout mice (VEGF-B-/-) and in rats with lung overexpression of VEGF-B induced by adenovirus transfer. No significant difference in pulmonary hemodynamics, right ventricular hypertrophy, distal ...
متن کاملStatin protects endothelial nitric oxide synthase activity in hypoxia-induced pulmonary hypertension.
OBJECTIVE We investigated the effects of fluvastatin on hypoxia-induced (1 to 3 weeks, 10% O2) pulmonary hypertension with focus on endothelial nitric oxide synthase (eNOS) activity. METHODS AND RESULTS Oral fluvastatin treatment (1 mg/kg daily) prevented the causing and progression of pulmonary hypertension as determined by the right ventricular pressure, right ventricular hypertrophy, and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 101 11 شماره
صفحات -
تاریخ انتشار 1998