Quasi–Lie schemes: theory and applications
نویسندگان
چکیده
A powerful method to solve nonlinear first-order ordinary differential equations, which is based on a geometrical understanding of the corresponding dynamics of the so-called Lie systems, is developed. This method enables us not only to solve some of these equations, but also gives geometrical explanations for some, already known, ad hoc methods of dealing with such problems. MSC 2000: 34A26 (Primary), 34A05, 34A34, 17B66, 22E70 (Secondary).
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملQuasi-Lie schemes and Emden–Fowler equations
The recently developed theory of quasi-Lie schemes is studied and applied to investigate several equations of Emden type and a scheme to deal with them and some of their generalisations is given. As a first result we obtain t-dependent constants of the motion for particular instances of Emden equations by means of some of their particular solutions. Previously known results are recovered from t...
متن کاملg-QUASI-FROBENIUS LIE ALGEBRAS
A Lie version of Turaev’s G-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a g-quasi-Frobenius Lie algebra for g a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra (q, β) together with a left g-module structure which acts on q via derivations and for which β is g-inva...
متن کاملA Quasi-Lie Schemes Approach to Second-Order Gambier Equations
A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way. This allows us to study the transformation of these equations into ...
متن کاملUniversal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کامل