Ablation of Potassium-Chloride Cotransporter Type 3 (Kcc3) in Mouse Causes Multiple Cardiovascular Defects and Isosmotic Polyuria

نویسندگان

  • Alexandre P. Garneau
  • Andrée-Anne Marcoux
  • Micheline Noël
  • Rachelle Frenette-Cotton
  • Marie-Claude Drolet
  • Jacques Couet
  • Richard Larivière
  • Paul Isenring
چکیده

Inactivation of Kcc3 in a mixed 129/Sv×C57BL/6 mouse background has been previously found to increase systemic blood pressure (BP) through presumed neurogenic mechanisms. Yet, while this background is generally not considered ideal to investigate the cardiovascular system, KCC3 is also expressed in the arterial wall and proximal nephron. In the current study, the effects of Kcc3 ablation was investigated in a pure rather than mixed C57BL/6J background under regular- and high-salt diets to determine whether they could be mediated through vasculogenic and nephrogenic mechanisms. Aortas were also assessed for reactivity to pharmacological agents while isolated from the influence of sympathetic ganglia. This approach led to the identification of unforeseen abnormalities such as lower pulse pressure, heart rate, aortic reactivity and aortic wall thickness, but higher diastolic BP, left ventricular mass and urinary output in the absence of increased catecholamine levels. Salt loading also led systolic BP to be higher, but to no further changes in hemodynamic parameters. Importantly, aortic vascular smooth muscle cells and cardiomyocytes were both found to express KCC3 abundantly in heterozygous mice. Hence, Kcc3 inactivation in our model caused systemic vascular resistance and ventricular mass to increase while preventing extracellular fluid volume to accumulate. Given that it also affected the physiological properties of aortas in vitro, vasculogenic mechanisms could therefore account for a number of the hemodynamic abnormalities observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Trafficking-Deficient Mutant of KCC3 Reveals Dominant-Negative Effects on K–Cl Cotransport Function

The K-Cl cotransporter (KCC) functions in maintaining chloride and volume homeostasis in a variety of cells. In the process of cloning the mouse KCC3 cDNA, we came across a cloning mutation (E289G) that rendered the cotransporter inactive in functional assays in Xenopus laevis oocytes. Through biochemical studies, we demonstrate that the mutant E289G cotransporter is glycosylation-deficient, do...

متن کامل

A role for KCC3 in maintaining cell volume of peripheral nerve fibers

The potassium chloride cotransporter, KCC3, is an electroneutral cotransporter expressed in the peripheral and central nervous system. KCC3 is responsible for the efflux of K+ and Cl- in neurons to help maintain cell volume and intracellular chloride levels. A loss-of-function (LOF) of KCC3 causes Hereditary Motor Sensory Neuropathy with Agenesis of the Corpus Callosum (HMSN/ACC) in a populatio...

متن کامل

Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family.

The K+-Cl- cotransporters (KCCs) belong to the gene family of electroneutral cation-chloride cotransporters, which also includes two bumetanide-sensitive Na+-K+-2Cl- cotransporters and a thiazide-sensitive Na+-Cl- cotransporter. We have cloned cDNAs encoding mouse KCC3, human KCC3, and human KCC4, three new members of this gene family. The KCC3 and KCC4 cDNAs predict proteins of 1083 and 1150 a...

متن کامل

Potassium-Chloride Cotransporter 3 Interacts with Vav2 to Synchronize the Cell Volume Decrease Response with Cell Protrusion Dynamics

Loss-of-function of the potassium-chloride cotransporter 3 (KCC3) causes hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), a severe neurodegenerative disease associated with defective midline crossing of commissural axons in the brain. Conversely, KCC3 over-expression in breast, ovarian and cervical cancer is associated with enhanced tumor cell malignancy ...

متن کامل

Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter.

We isolated and characterized a novel K-Cl cotransporter, KCC3, from human placenta. The deduced protein contains 1,150 amino acids. KCC3 shares 75-76% identity at the amino acid level with human, pig, rat, and rabbit KCC1 and 67% identity with rat KCC2. KCC3 is 40 and 33% identical to two Caenorhabditis elegans K-Cl cotransporters and ∼20% identical to other members of the cation-chloride cotr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016