Topological Methods in Modern Mathematics LOCAL CONNECTIVITY OF JULIA SETS AND BIFURCATION LOCI: THREE THEOREMS OF J.-C. YOCCOZ

نویسندگان

  • J. H. Hubbard
  • J. H. HUBBARD
چکیده

KP = { z ∈ C | the sequence P ◦k(z) is bounded }. We will write Pc(z) = z2 + c, and Kc, etc., when discussing quadratic polynomials speciˇcally. If P is monic of degree d with KP connected, there is then a unique conformal mapping φP : C − KP → C − $ D which satisˇes φP (P (z)) = (φP (z))d and tangent to the identity at ∞. We call RP (θ) = φ−1 P ({re2π iθ , r > 1}) the external ray of KP at angle θ . In the quadratic parameter space, let

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternated Julia Sets and Connectivity Properties

In this paper we present the alternated Julia sets, obtained by alternated iteration of two maps of the quadratic family 2 1 , 1,2 n n i z z c i     and prove analytically and computationally that these sets can be connected, disconnected or totally disconnected verifying the known Fatou-Julia theorem in the case of polynomials of degree greater than two. A few examples are presented.

متن کامل

Real Continuation from the Complex quadratic Family: Fixed-Point bifurcation Sets

This paper is primarily a numerical study of the xed-point bifurcation loci { saddle-node, period-doubling and Hopf bifurcations { present in the family: z ! f (C;A) (z; z) z + z 2 + C + Az where z is a complex dynamic (phase) variable, z its complex conjugate, and C and A are complex parameters. We treat the parameter C as a primary parameter and A as a secondary parameter, asking how the bifu...

متن کامل

From the Box-within-a-Box bifurcation Organization to the Julia Set Part I: Revisited Properties of the Sets Generated by a Quadratic Complex Map with a Real Parameter

Properties of the different configurations of Julia sets J , generated by the complex map TZ : z′ = z − c, are revisited when c is a real parameter, −1/4 < c < 2. This is done from a detailed knowledge of the fractal bifurcation organization “box-within-a-box”, related to the real Myrberg’s map T : x′ = x − λ, first described in 1975. Part I of this paper constitutes a first step, leading to Pa...

متن کامل

Homoclinic orbits and bifurcation of entropy-carrying hit-sets

We study a generic piecewise monotone map f : [0, 1] → [0, 1] with a particular type of entropy-carrying set X. We show under certain conditions that maps sufficiently C-close to f with more topological entropy have entropy-carrying sets containing X. New homoclinic orbits are created to every periodic point of X. 2000 Mathematics Subject Classification (MSC2000). 37E05, 37B40, 37Gxx

متن کامل

From the Box-within-a-Box bifurcation Structure to the Julia Set Part II: bifurcation Routes to Different Julia Sets from an Indirect Embedding of a Quadratic Complex Map

Part I of this paper has been devoted to properties of the different Julia set configurations, generated by the complex map TZ : z′ = z − c, c being a real parameter, −1/4 < c < 2. These properties were revisited from a detailed knowledge of the fractal organization (called “boxwithin-a-box”), generated by the map x′ = x − c with x a real variable. Here, the second part deals with an embedding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008