Chebyshev pseudospectral collocation for parabolic problems with non- constant coefficients

نویسنده

  • J. de Frutos
چکیده

This paper analyses a Chebyshev pseudospectral collocation semidiscrete (continuous in time) discretization of a variable coefficient parabolic problem. Optimal stability and convergence estimates are given. The analysis is based on an approximation property concerning the GaussLobatto-Chebyshev interpolation operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability of Pseudospectral - Chebyshev Methods

The stability of pseudospectral-Chebyshev methods is demonstrated for parabolic and hyperbolic problems with variable coefficients. The choice of collocation points is discussed. Numerical examples are given for the case of variable coefficient hyperbolic equations.

متن کامل

Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems

Pseudospectral methods are investigated for singularly perturbed boundary value problems for ordinary diierential equations which possess boundary layers. It is well known that if the boundary layer is very small then a very large number of spectral collocation points is required to obtain accurate solutions. We introduce here a new eeective procedure, based on coordinate stretching and the Che...

متن کامل

A Fast Poisson Solver by Chebyshev Pseudospectral Method Using Reflexive Decomposition

Poisson equation is frequently encountered in mathematical modeling for scientific and engineering applications. Fast Poisson numerical solvers for 2D and 3D problems are, thus, highly requested. In this paper, we consider solving the Poisson equation ∇2u = f(x, y) in the Cartesian domain Ω = [−1, 1] × [−1, 1], subject to all types of boundary conditions, discretized with the Chebyshev pseudosp...

متن کامل

An Analytical and Numerical Study of the Two-Dimensional Bratu Equation

Bratu's problem, which is the nonlinear eigenvalue equation Au + 2 exp(u)= 0 with u = 0 on the walls of the unit square and 2 as the eigenvalue, is used to develop several themes on applications of Chebyshev pseudospectral methods. The first is the importance of symmett:v: because of invariance under the C 4 rotation group and parity in both x and y, one can slash the size of the basis set by a...

متن کامل

Convergence Results for Pseudospectral Approximations of Hyperbolic Systems by a Penalty - Type Boundary Treatment

In a previous paper we have presented a new method of imposing boundary conditions in the pseudospectral Chebyshev approximation of a scalar hyperbolic equation. The novel idea of the new method is to collocate the equation at the boundary points as well as in the inner grid points, using the boundary conditions as penalty terms. In this paper we extend the above boundary treatment to the case ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995