The key role of microtubules in hypoxia preconditioning-induced nuclear translocation of HIF-1α in rat cardiomyocytes
نویسندگان
چکیده
BACKGROUND Hypoxia-inducible factor (HIF)-1 is involved in the regulation of hypoxic preconditioning in cardiomyocytes. Under hypoxic conditions, HIF-1α accumulates and is translocated to the nucleus, where it forms an active complex with HIF-1β and activates transcription of approximately 60 kinds of hypoxia-adaptive genes. Microtubules are hollow tubular structures in the cell that maintain cellular morphology and that transport substances. This study attempted to clarify the role of microtubule structure in the endonuclear aggregation of HIF-1α following hypoxic preconditioning of cardiomyocytes. METHODS Primary rat cardiomyocytes were isolated and cultured. The cardiomyocyte culture system was used to establish a hypoxia model and a hypoxic preconditioning model. Interventions were performed on primary cardiomyocytes using a microtubule-depolymerizing agent and different concentrations of a microtubule stabilizer. The microtubule structure and the degree of HIF-1α nuclear aggregation were observed by confocal laser scanning microscopy. The expression of HIF-1α in the cytoplasm and nucleus was detected using Western blotting. Cardiomyocyte energy content, reflected by adenosine triphosphate/adenosine diphosphate (ATP/ADP), and key glycolytic enzymes were monitored by colorimetry and high-performance liquid chromatography (HPLC). Reactive oxygen species (ROS) production was also used to comprehensively assess whether microtubule stabilization can enhance the myocardial protective effect of hypoxic preconditioning. RESULTS During prolonged hypoxia, it was found that the destruction of the microtubule network structure of cardiomyocytes was gradually aggravated. After this preconditioning, an abundance of HIF-1α was clustered in the nucleus. When the microtubules were depolymerized and hypoxia pretreatment was performed, HIF-1α clustering occurred around the nucleus, and HIF-1α nuclear expression was low. The levels of key glycolytic enzymes were significantly higher in the microtubule stabilizer group than in the hypoxia group. Additionally, the levels of lactate dehydrogenase and ROS were significantly lower in the microtubule stabilizer group than in the hypoxia group. CONCLUSION The microtubules of cardiomyocytes may be involved in the process of HIF-1α endonuclear aggregation, helping to enhance the anti-hypoxic ability of cardiomyocytes.
منابع مشابه
Role of Ran-regulated nuclear-cytoplasmic trafficking of pVHL in the regulation of microtubular stability-mediated HIF-1α in hypoxic cardiomyocytes
Our previous study suggested that microtubule network alteration affects the process of glycolysis in cardiomyocytes (CMs) via the regulation of hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known regarding the underlying mechanisms of microtubule network alteration-induced changes of HIF-1α. The von Hippel-Lindau tumor suppressor protein (pVHL) has be...
متن کاملMild hypoxia-induced cardiomyocyte hypertrophy via up-regulation of HIF-1α-mediated TRPC signalling
Hypoxia-inducible factor-1 alpha (HIF-1α) is a central transcriptional regulator of hypoxic response. The present study was designed to investigate the role of HIF-1α in mild hypoxia-induced cardiomyocytes hypertrophy and its underlying mechanism. Mild hypoxia (MH, 10% O(2)) caused hypertrophy in cultured neonatal rat cardiac myocytes, which was accompanied with increase of HIF-1α mRNA and accu...
متن کاملThe influence of rapamycin on the early cardioprotective effect of hypoxic preconditioning on cardiomyocytes
INTRODUCTION The purpose of this study was to examine the effects of rapamycin on the cardioprotective effect of hypoxic preconditioning (HPC) and on the mammalian target of rapamycin (mTOR)-mediated hypoxia-inducible factor 1 (HIF-1) signaling pathway. MATERIAL AND METHODS Primary cardiomyocytes were isolated from rat pups and underwent rapamycin and/or HPC, followed by hypoxia/re-oxygenatio...
متن کاملInhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats
Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...
متن کاملHypoxia-Inducible Factor-1alpha and MAPK Co-Regulate Activation of Hepatic Stellate Cells upon Hypoxia Stimulation
BACKGROUND Hepatic stellate cell (HSC) plays a key role in pathogenesis of liver fibrosis. During liver injury, hypoxia in local micro-environment is inevitable. Hif-1α is the key transcriptional regulation factor that induces cell's adaptive responses to hypoxia. Recently, it was reported that MAPK is involved in regulation of Hif-1α activity. AIMS To explore whether Hif-1α regulates HSC act...
متن کامل