Distributed and Scalable Variance-reduced Stochastic Gradient Descent

نویسنده

  • Kelvin Kai Wing Ng
چکیده

1) There exists a study on employing mini-batch approach on SVRG, one of the VR methods. It shows that the approach cannot scale well that there is no significant difference between using 16 threads and more[2]. This study observes the cause of the poor scalability of this existing mini-batch approach on VR method. 2) The performance of mini-batch approach on distributed setting is improved by reducing the frequency of synchronization without significantly affecting the result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance Reduction for Distributed Stochastic Gradient Descent

Variance reduction (VR) methods boost the performance of stochastic gradient descent (SGD) by enabling the use of larger, constant stepsizes and preserving linear convergence rates. However, current variance reduced SGD methods require either high memory usage or an exact gradient computation (using the entire dataset) at the end of each epoch. This limits the use of VR methods in practical dis...

متن کامل

Asynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization

We provide the first theoretical analysis on the convergence rate of the asynchronous stochastic variance reduced gradient (SVRG) descent algorithm on nonconvex optimization. Recent studies have shown that the asynchronous stochastic gradient descent (SGD) based algorithms with variance reduction converge with a linear convergent rate on convex problems. However, there is no work to analyze asy...

متن کامل

Decoupled Asynchronous Proximal Stochastic Gradient Descent with Variance Reduction

In the era of big data, optimizing large scale machine learning problems becomes a challenging task and draws significant attention. Asynchronous optimization algorithms come out as a promising solution. Recently, decoupled asynchronous proximal stochastic gradient descent (DAP-SGD) is proposed to minimize a composite function. It is claimed to be able to offload the computation bottleneck from...

متن کامل

Accelerating Stochastic Gradient Descent using Predictive Variance Reduction

Stochastic gradient descent is popular for large scale optimization but has slow convergence asymptotically due to the inherent variance. To remedy this problem, we introduce an explicit variance reduction method for stochastic gradient descent which we call stochastic variance reduced gradient (SVRG). For smooth and strongly convex functions, we prove that this method enjoys the same fast conv...

متن کامل

Conjugate gradient neural network in prediction of clay behavior and parameters sensitivities

The use of artificial neural networks has increased in many areas of engineering. In particular, this method has been applied to many geotechnical engineering problems and demonstrated some degree of success. A review of the literature reveals that it has been used successfully in modeling soil behavior, site characterization, earth retaining structures, settlement of structures, slope stabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016