Harmonic maps in unfashionable geometries

نویسندگان

  • Francis Burstall
  • Udo Hertrich-Jeromin
چکیده

Many topics in integrable surface geometry may be unified by application of the highly developed theory of harmonic maps of surfaces into (pseudo-)Riemannian symmetric spaces. On the one hand, such harmonic maps comprise an integrable system with spectral deformations, algebro-geometric solutions and dressing actions of loop groups generated by Bäcklund transforms [5], [6], [14], [21], [24]. On the other hand, several integrable classes of surface are characterized by harmonicity of a suitable Gauss map. Thus, a surface f : M → R3 has constant mean curvature H if and only if its Gauss map M → S is harmonic. Again, such a surface has constant Gauss curvature K if and only if its Gauss map is harmonic with respect to the metric on M provided by the second fundamental form of f. The theory of harmonic maps now provides a conceptual explanation of the classical integrable aspects of such surfaces such as associated families, Lie and Bäcklund transformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoding a Class of Alternant Codes for the Lee Metric

Following are the abstracts of contributions (i.e., talks and posters) to the 13th Annual Meeting of the IMS held at the National University of Ireland Maynooth, 6–8 September 2000. The abbreviations after the names designate: ‘M’ for main speaker, ‘S’ for speaker, ‘RS’ for research student, and ‘P’ for poster. The abstracts are included as provided by the contributors for this volume of the Bu...

متن کامل

Biharmonic Maps into Sol and Nil Spaces

In this paper, we study biharmonic maps into Sol and Nil spaces, two model spaces of Thurston's 3-dimensional geometries. We characterize non-geodesic biharmonic curves in Sol space and prove that there exists no non-geodesic biharmonic helix in Sol space. We also show that a linear map from a Eu-clidean space into Sol or Nil space is biharmonic if and only if it is a harmonic map, and give a c...

متن کامل

Some geometrical properties of the oscillator group

‎We consider the oscillator group equipped with‎ ‎a biinvariant Lorentzian metric‎. ‎Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional‎ ‎restricted to vector fields‎. ‎Left-invariant vector fields defining harmonic maps are...

متن کامل

Reversible Harmonic Maps between Discrete Surfaces

Information transfer between triangle meshes is of great importance in computer graphics and geometry processing. To facilitate this process, a smooth and accurate map is typically required between the two meshes. While such maps can sometimes be computed between nearly-isometric meshes, the more general case of meshes with diverse geometries remains challenging. We propose a novel approach for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008