Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture.

نویسندگان

  • Hans-Peter Kubis
  • Nina Hanke
  • Renate J Scheibe
  • Joachim D Meissner
  • Gerolf Gros
چکیده

The calcineurin-mediated signal transduction via nuclear factor of activated T cells (NFATc1) is involved in upregulating slow myosin heavy chain (MHC) gene expression during fast-to-slow transformation of skeletal muscle cells. This study aims to investigate the Ca2+ signal necessary to activate the calcineurin-NFATc1 cascade in skeletal muscle. Electrostimulation of primary myocytes from rabbit for 24 h induced a distinct fast-to-slow transformation at the MHC mRNA level and a full activation of the calcineurin-NFATc1 pathway, although resting Ca2+ concentration ([Ca2+]i) remained unaltered at 70 nM. During activation, the calcium transients of these myocytes reach a peak concentration of approximately 500 nM. Although 70 nM [Ca2+]i does not activate calcineurin-NFAT, we show by the use of Ca2+ ionophore that the system is fully activated when [Ca2+]i is >or=150 nM in a sustained manner. We conclude that the calcineurin signal transduction pathway and the slow MHC gene in cultured skeletal muscle cells are activated by repetition of the rapid high-amplitude calcium transients that are associated with excitation-contraction coupling rather than by a sustained elevation of resting Ca2+ concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers.

Two Ca2+-dependent signaling pathways, mediated by the Ca2+-activated phosphatase calcineurin and by the Ca2+-activated kinase Ca2+/calmodulin-dependent kinase (CaMK), are both believed to function in fast-to-slow skeletal muscle fiber type transformation, but questions about the relative importance of the two pathways still remain. Here, the differential gene expression during fast-to-slow fib...

متن کامل

NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle.

Calcineurin-NFAT signaling has been shown to control activity-dependent muscle gene regulation and induce a program of gene expression typical of slow oxidative muscle fibers. Following Ca2+-calmodulin stimulation, calcineurin dephosphorylates NFAT proteins and induces their translocation into the nucleus. However, NFAT nuclear translocation has never been investigated in skeletal muscle in viv...

متن کامل

The calcineurin-NFAT pathway and muscle fiber-type gene expression.

To test for a role of the calcineurin-NFAT (nuclear factor of activated T cells) pathway in the regulation of fiber type-specific gene expression, slow and fast muscle-specific promoters were examined in C2C12 myotubes and in slow and fast muscle in the presence of calcineurin or NFAT2 expression plasmids. Overexpression of active calcineurin in myotubes induced both fast and slow muscle-specif...

متن کامل

Activity- and calcineurin-independent nuclear shuttling of NFATc1, but not NFATc3, in adult skeletal muscle fibers.

The transcription factor NFATc1 may be involved in slow skeletal muscle gene expression. NFATc1 translocates from cytoplasm to nuclei during slow fiber type electrical stimulation of skeletal muscle fibers because of activation of the Ca(2+)-dependent phosphatase calcineurin, resulting in nuclear factor of activated T-cells (NFAT) dephosphorylation and consequent exposure of its nuclear localiz...

متن کامل

Akirin2 promotes slow myosin heavy chain expression by CaN/NFATc1 signaling in porcine skeletal muscle satellite cells

The objective of this study was to evaluate the effect of Akirin2 on slow myosin heavy chain (slow MyHC, MyHC I) gene expression and its molecular mechanisms. In this study, we showed that the protein expression of Akirin2 in pig slow oxidative Psoas major muscle is higher than that in fast glycolytic tibialis anterior muscle, suggesting that Akirin2 may play a role in myofiber typing. Knockdow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 285 1  شماره 

صفحات  -

تاریخ انتشار 2003