An Algorithm for the Construction of Matrix Representations for Finitely Presented Non-Commutative Algebras

نویسنده

  • Gilles Labonté
چکیده

Let a finite presentation be given for an associative, in general non-commulative algebra E, with identity, over a field. We study an algorithm for the construction, from this presentation, of linear, i.e, matrix, representations of this algebra. A set of vector constraints which is given as part of the initial data determines which particular representation of E is produced. This construction problem for the algebra is solved through a reduction of it to the much simpler problem of constructing a Gr6bner basis for a left module. The price paid for this simplification is that the latter is then infinitely presented. Convergence of the algorithm is proven for all cases where the representation to be found is finite dimensional; which is always the case, ['or example, when E is finite. Examples are provided, some of which illustrate the close relationship that exists between this method and the Todd-Coxetcr coset-enumeration method for group theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NILPOTENT GRAPHS OF MATRIX ALGEBRAS

Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...

متن کامل

Constructing Irreducible Representations of Finitely Presented Algebras

We describe an algorithmic test, using the “standard polynomial identity” (and elementary computational commutative algebra), for determining whether or not a finitely presented associative algebra has an irreducible n-dimensional representation. When ndimensional irreducible representations do exist, our proposed procedure can (in principle) produce explicit constructions.

متن کامل

Global Dimensions of Some Artinian Algebras

The structure of arbitrary associative commutative unital artinian algebras is well-known: they are finite products of associative commutative unital local algebras [6, pg.351, Cor. 23.12]. In the semi-simple case, we have the Artin-Wedderburn Theorem which states that any semi-simple artinian algebra (which is assumed to be associative and unital but not necessarily commutative) is a direct pr...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Matrix representations of finitely generated Grassmann algebras and some consequences

We prove that the m-generated Grassmann algebra can be embedded into a 2 × 2 matrix algebra over a factor of a commutative polynomial algebra in m indeterminates. Cayley–Hamilton and standard identities for n× n matrices over the m-generated Grassmann algebra are derived from this embedding. Other related embedding results are also presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1990