Liquid-vapor interfaces of patchy colloids.
نویسندگان
چکیده
We investigate the liquid-vapor interface of a model of patchy colloids. This model consists of hard spheres decorated with short-ranged attractive sites ("patches") of different types on their surfaces. We focus on a one-component fluid with two patches of type A and nine patches of type B (2A9B colloids), which has been found to exhibit reentrant liquid-vapor coexistence curves and very low-density liquid phases. We have used the density-functional theory form of Wertheim's first-order perturbation theory of association, as implemented by Yu and Wu [J. Chem. Phys. 116, 7094 (2002)], to calculate the surface tension, and the density and degree of association profiles, at the liquid-vapor interface of our model. In reentrant systems, where AB bonds dominate, an unusual thickening of the interface is observed at low temperatures. Furthermore, the surface tension versus temperature curve reaches a maximum, in agreement with Bernardino and Telo da Gama's mesoscopic Landau-Safran theory [Phys. Rev. Lett. 109, 116103 (2012)]. If BB attractions are also present, competition between AB and BB bonds gradually restores the monotonic temperature dependence of the surface tension. Lastly, the interface is "hairy," i.e., it contains a region where the average chain length is close to that in the bulk liquid, but where the density is that of the vapor. Sufficiently strong BB attractions remove these features, and the system reverts to the behavior seen in atomic fluids.
منابع مشابه
Toward generating low-friction nanoengineered surfaces with liquid-vapor interfaces.
Using molecular dynamics (MD), we investigate the importance of liquid-vapor interface topography in designing low-friction nanoengineered superhydrophobic surfaces. Shear flow is simulated on patterned surfaces. The relationship between the effective slip length and bubble meniscus curvature is attained by generating entrapped bubbles with large protrusion angles on patterned surfaces with nan...
متن کاملVelocity Gradient Power Functional Theory for Brownian Dynamics,Liquid-vapour Interfaces of Patchy Colloids
functional theory to nonequilibrium Brownian dynamics. We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) power functional based on the local velocity gradient. The resulting superadiabatic forces, obtained via functional differentiation, are beyond dynamical density functional theory and explain a broad range of phenomena such as viscous forces, lane...
متن کاملPhase diagram of patchy colloids: towards empty liquids.
We report theoretical and numerical evaluations of the phase diagram for patchy colloidal particles of new generation. We show that the reduction of the number of bonded nearest neighbors offers the possibility of generating liquid states (i.e., states with temperature T lower than the liquid-gas critical temperature) with a vanishing occupied packing fraction (phi), a case which can not be rea...
متن کاملVapor-liquid coexistence of patchy models: relevance to protein phase behavior.
The vapor-liquid coexistence boundaries of fluids composed of particles interacting with highly directional patchy interactions, in addition to an isotropic square well potential, are evaluated using grand canonical Monte Carlo simulations combined with the histogram reweighting and finite size scaling methods. We are motivated to study this more complicated model for two reasons. First, it is ...
متن کاملGel-forming patchy colloids and network glass formers: Thermodynamic and Dynamic analogies
This article discusses recent attempts to provide a deeper understanding of the thermoreversible ”gel” state of colloidal matter and to unravel the analogies between gels at the colloidal level and gels at the molecular level, commonly known as network-forming strong liquids. The connection between gel-forming patchy colloids and strong liquids is provided by the limited valence of the inter-pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2015