Septic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation
نویسنده
چکیده
In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The global relative error and L∞ in the solutions show the efficiency of the method computationally. Keywords—Kuramoto-Sivashinsky equation; Septic B-spline; Collocation method; Finite difference.
منابع مشابه
B-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION
We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.
متن کاملApplication of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation
In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using a new approach by combining cubic B-spline functions. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed. Three invariants of motion are...
متن کاملApplication of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملSeptic B-spline Collocation Method for Sixth Order Boundary Value Problems
In this paper sixth order boundary value problems is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. The septic B-splines constitute a basis for the space of septic polynomial splines. In the method, the basis functions are redefined into a new set of basis functions which in number match with the number of selected co...
متن کاملA Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations
In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...
متن کامل