Large Scale Variational Bayesian Inference for Structured Scale Mixture Models
نویسندگان
چکیده
Natural image statistics exhibit hierarchical dependencies across multiple scales. Representing such prior knowledge in non-factorial latent tree models can boost performance of image denoising, inpainting, deconvolution or reconstruction substantially, beyond standard factorial “sparse” methodology. We derive a large scale approximate Bayesian inference algorithm for linear models with nonfactorial (latent tree-structured) scale mixture priors. Experimental results on a range of denoising and inpainting problems demonstrate substantially improved performance compared to MAP estimation or to inference with factorial priors.
منابع مشابه
The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملStreaming Variational Inference for Bayesian Nonparametric Mixture Models
In theory, Bayesian nonparametric (BNP) models are well suited to streaming data scenarios due to their ability to adapt model complexity with the observed data. Unfortunately, such benefits have not been fully realized in practice; existing inference algorithms are either not applicable to streaming applications or not extensible to BNP models. For the special case of Dirichlet processes, stre...
متن کاملMonte Carlo Structured SVI for Non-Conjugate Models
The stochastic variational inference (SVI) paradigm, which combines variational inference, natural gradients, and stochastic updates, was recently proposed for large-scale data analysis in conjugate Bayesian models and demonstrated to be effective in several problems. This paper studies a family of Bayesian latent variable models with two levels of hidden variables but without any conjugacy req...
متن کاملOnline Inference in Bayesian Non-Parametric Mixture Models under Small Variance Asymptotics
Adapting statistical learning models online with large scale streaming data is a challenging problem. Bayesian non-parametric mixture models provide flexibility in model selection, however, their widespread use is limited by the computational overhead of existing sampling-based and variational techniques for inference. This paper analyses the online inference problem in Bayesian non-parametricm...
متن کاملTruncation-free Stochastic Variational Inference for Bayesian Nonparametric Models
We present a truncation-free stochastic variational inference algorithm for Bayesian nonparametric models. While traditional variational inference algorithms require truncations for the model or the variational distribution, our method adapts model complexity on the fly. We studied our method with Dirichlet process mixture models and hierarchical Dirichlet process topic models on two large data...
متن کامل