A Novel Clinical Expert System for Chest Pain Risk Assessment

نویسندگان

  • Kamran Farooq
  • Amir Hussain
  • Hicham Atassi
  • Stephen Leslie
  • Chris Eckl
  • Calum MacRae
  • Warner V. Slack
چکیده

Rapid access chest pain clinics (RACPC) enable clinical risk assessment, investigation and arrangement of a treatment plan for chest pain patients without a long waiting list. RACPC Clinicians often experience difficulties in the diagnosis of chest pain due to the inherent complexity of the clinical process and lack of comprehensive automated diagnostic tools. To date, various risk assessment models have been proposed, inspired by the National Institute of Clinical Excellence (NICE) guidelines to provide clinical decision support mechanism in chest pain diagnosis. The aim of this study is to help improve the performance of RACPC, specifically from the clinical decision support perspective. The study cohort comprises of 632 patients suspected of cardiac chest pain. A retrospective data analysis of the clinical studies evaluating 14 risk factors for chest pain patients was performed for the development of RACPC specific risk assessment models to distinguish between cardiac and non cardiac chest pain. In the first phase, a novel binary classification model was developed using a Decision Tree algorithm in conjunction with forward and backward selection wrapping techniques. Secondly, a logistic regression model was trained using all of the given variables combined with forward and backward feature selection techniques to identify the most significant features. The new models have resulted in very good predictive power, demonstrating general performance improvement compared to a state-of-the-art prediction model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel ontology and machine learning driven hybrid cardiovascular clinical prognosis as a complex adaptive clinical system

Purpose: This multidisciplinary industrial research project sets out to develop a hybrid clinical decision support mechanism (inspired by ontology and machine learning driven techniques) by combining evidence, extrapolated through legacy patient data to facilitate cardiovascular preventative care. Methods: The proposed cardiovascular clinical decision support framework comprises of two novel ke...

متن کامل

ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography.

on Coronary Artery Calcium Scoring by Computed Tomography in Global Cardiovascular Risk Assessment and in Evaluation of Patients With Chest Pain A Report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) Developed in Collaboration With the Society of...

متن کامل

Diagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search

In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...

متن کامل

A belief rule-based decision support system for clinical risk assessment of cardiac chest pain

This paper describes a prototype clinical decision support system (CDSS) for risk stratification of patients with cardiac chest pain. A newly developed belief rule-based inference methodology-RIMER was employed for developing the prototype. Based on the belief rule-based inference methodology, the prototype CDSS can deal with uncertainties in both clinical domain knowledge and clinical data. Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013