Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila
نویسندگان
چکیده
Our understanding of the molecular mechanisms underlying sleep homeostasis is limited. We have taken a systematic approach to study neural signaling by the transmitter 5-hydroxytryptamine (5-HT) in drosophila. We have generated knockout and knockin lines for Trh, the 5-HT synthesizing enzyme and all five 5-HT receptors, making it possible for us to determine their expression patterns and to investigate their functional roles. Loss of the Trh, 5HT1a or 5HT2b gene decreased sleep time whereas loss of the Trh or 5HT2b gene diminished sleep rebound after sleep deprivation. 5HT2b expression in a small subset of, probably a single pair of, neurons in the dorsal fan-shaped body (dFB) is functionally essential: elimination of the 5HT2b gene from these neurons led to loss of sleep homeostasis. Genetic ablation of 5HT2b neurons in the dFB decreased sleep and impaired sleep homeostasis. Our results have shown that serotonergic signaling in specific neurons is required for the regulation of sleep homeostasis.
منابع مشابه
Gq is involved in the sleep circuit of Drosophila dorsal fan - shaped body
Sleep is a biological process regulated by the circadian clock and a homeostatic mechanism. Several structures, such as the dorsal fan-shaped body (dFSB) in Drosophila melanogaster, have been implicated in the regulation of sleep homeostasis. The dFSB and dopamine together play a role in the transition between sleep and wake in flies, but it is unclear whether these two also function in the tra...
متن کاملTwo Dopaminergic Neurons Signal to the Dorsal Fan-Shaped Body to Promote Wakefulness in Drosophila
BACKGROUND The neuronal circuitry underlying sleep is poorly understood. Although dopamine (DA) is thought to play a key role in sleep/wake regulation, the identities of the individual DA neurons and their downstream targets required for this process are unknown. RESULTS Here, we identify a DA neuron in each PPL1 cluster that promotes wakefulness in Drosophila. Imaging data suggest that the a...
متن کاملNeuronal Machinery of Sleep Homeostasis in Drosophila
Sleep is under homeostatic control, but the mechanisms that sense sleep need and correct sleep deficits remain unknown. Here, we report that sleep-promoting neurons with projections to the dorsal fan-shaped body (FB) form the output arm of Drosophila's sleep homeostat. Homeostatic sleep control requires the Rho-GTPase-activating protein encoded by the crossveinless-c (cv-c) gene in order to tra...
متن کاملRecurrent Circuitry for Balancing Sleep Need and Sleep
Sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila are integral to sleep homeostasis, but how these cells impose sleep on the organism is unknown. We report that dFB neurons communicate via inhibitory transmitters, including allatostatin-A (AstA), with interneurons connecting the superior arch with the ellipsoid body of the central complex. These "helicon cells" express t...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کامل