Combinatorial Recurrences and Linear Difference Equations

نویسندگان

  • M. José Jiménez
  • Andrés M. Encinas
چکیده

In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of linear three–term recurrences. We show through some simple examples how these triangular arrays appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

On First-Order Two-Dimensional Linear Homogeneous Partial Di erence Equations

Analysis of algorithms occasionally requires solving of rst-order two-dimensional linear homogeneous partial di erence equations. We survey solutions to special cases of the linear recurrence equation (am + bn + c)Fm;n = (dm + en + f)Fm 1;n + (gm + hn + i)Fm 1;n 1 in terms of known functions and establish equivalences between unsolved cases. The article also reviews solution techniques used to ...

متن کامل

Generating Matrices for Weighted Sums of Second Order Linear Recurrences

In this paper, we give fourth order recurrences and generating matrices for the weighted sums of second order recurrences. We derive by matrix methods some new explicit formulas and combinatorial representations, and some relationships between the permanents of certain superdiagonal matrices and these sums.

متن کامل

CHOMP, RECURRENCES, and CHAOS(?)

In this article, dedicated with admiration and friendship to Chaos and Difference (and hence Recurrence) Equations Guru Saber Elaydi, I give a new approach and a new algorithm for Chomp, David Gale’s celebrated combinatorial game. This work is inspired by Xinyu Sun’s “ultimate-periodicity” conjecture and by its brilliant proof by high-school-student Steven Byrnes. The algorithm is implemented i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016