Mg2+-dependent Gating and Strong Inward Rectification of the Cation Channel TRPV6

نویسندگان

  • Thomas Voets
  • Annelies Janssens
  • Jean Prenen
  • Guy Droogmans
  • Bernd Nilius
چکیده

TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Recombinant Human TRPV6 Channel Functions as Ca Sensor in Human Embryonic Kidney and Rat Basophilic Leukemia Cells*

The activation mechanism of the recently cloned human transient receptor potential vanilloid type 6 (TRPV6) channel, originally termed Ca transporterlike protein and Ca transporter type 1, was investigated in whole-cell patch-clamp experiments using transiently transfected human embryonic kidney and rat basophilic leukemia cells. The TRPV6-mediated currents are highly Ca -selective, show a stro...

متن کامل

The recombinant human TRPV6 channel functions as Ca2+ sensor in human embryonic kidney and rat basophilic leukemia cells.

The activation mechanism of the recently cloned human transient receptor potential vanilloid type 6 (TRPV6) channel, originally termed Ca(2+) transporter-like protein and Ca(2+) transporter type 1, was investigated in whole-cell patch-clamp experiments using transiently transfected human embryonic kidney and rat basophilic leukemia cells. The TRPV6-mediated currents are highly Ca(2+)-selective,...

متن کامل

Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine

Inward rectifier K+ channels mediate the K+ conductance at resting potential in many types of cell. Since these K+ channels do not pass outward currents (inward rectification) when the cell membrane is depolarized beyond a trigger threshold, they play an important role in controlling excitability. Both a highly voltage-dependent block by intracellular Mg2+ and an endogenous gating process are p...

متن کامل

Two mechanisms for inward rectification of current flow through the purinoceptor P2X2 class of ATP-gated channels.

1. The ATP receptor subunit P2X2 was expressed in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. ATP-activated currents were studied with two-electrode voltage clamp recordings from oocytes, whole-cell recordings from HEK 293 cells, and outside-out patch clamp recordings from both cell types. The steady-state current-voltage (I-V) relation showed profound inward rectification in al...

متن کامل

The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines

The mechanism of inward rectification was examined in cell-attached and inside-out membrane patches from Xenopus oocytes expressing the cloned strong inward rectifier HRK1. Little or no outward current was measured in cell-attached patches. Inward currents reach their maximal value in two steps: an instantaneous phase followed by a time-dependent "activation" phase, requiring at least two expon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2003