A Haar Wavelet-Based Zoning For Offline Arabic Handwritten Character Recognition

نویسنده

  • Mohammed Hassan
چکیده

Due to the nature of handwriting with high degree of variability and imprecision, obtaining features that represent characters is a difficult task. In this research, a features extraction method for handwritten Arabic Character recognition is investigated. Its major goal is to maximize the recognition rate with the least amount of elements. This method compute the 1 level Haar Wavelet Transform for Binary character image, then divide the Wavelet space into 8 Zones, for each Zone, three features have been extracted: mean, standard division, and skewness. The Recognition have been done using Mahalanobis distance. The proposed method provides good recognition accuracy of 73% for handwritten characters even with fewer train samples. Keyword: Haar Wavelet, Zoning, Mahalanobis Distance, Skewness. ةصلاخلا اذل ،ةبعص ًادج نوكتس فورحلا لثمت يتلا صاوخلا ىلع لوصحلا ةمهم نأف ديلا طخب ةبوتكملا صوصنلل ةريغتملاو ةقيقد ريغلا ةعيبطلل ًارظن يف متل ةدمتعملا تافصلا صلاختسلا ةقيرط ثحب متيس ،ثحبلا اذه ةبـسن ميظعت وه ةقيرطلا هذهل يسيئرلا فدهلا ،ديلاب ةبوتكملا ةيبرعلا فورحلا زيي يسقت متي مث نم ، ةيئانثلا فرحلا ةروصل دحاولا ىوتسملا وذ يجوملا راه ليوحت بسحت ًلاوأ ةقيرطلا هذه .تافصلا نم ددع لقأ عم زييمتلا ةقطنم م ىلا يجوملا ليوحتلا 8 لاختسا متي ةقطنم لكل ،قطانم ص 3 مادختساب اهباسح متف زييمتلا ةلحرم امأ .نلايملاو يرايعملا فارحنلاا ،لدعملا :تافص زييمت ةبسن تطعا ةحرتقملا ةقيرطلا .سبولنهم ةفاسم 73 . ةبردملا فورحلا روص نم ليلق ددع عم % تاملكلا ةیحاتفملا : .نلایملا ،سبولنھم ةفاسم ،ةمسقملا قطانملا ،يجوملا راھ

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handwritten Character Recognition for Tamil and English Using Wavelet Transform

Intensive research has been done on optical character recognition (OCR) and a more number of articles have been published on this topic during the last few decades. Many commercial OCR systems are available in the market. But most of the systems work for Roman, Chinese, Japanese and Arabic characters. There is no sufficient number of works on Indian language especially Tamil language. Recogniti...

متن کامل

VHDL Modelling of Fuzzy Wavelet Based Handwritten Recognition System

The handwritten character recognition system using fuzzy wavelet is modelled using Very High Speed Hardware Description Language (VHDL). The fuzzy wavelet handwritten recognition is a system based on human perception. The time-frequency localization capabilities of wavelet transform in feature extraction enhances the accuracy of recognition at pixel level. The characteristic features of handwri...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Handwritten Gurumukhi Character Recognition Using Convolution Neural Network

Handwritten Character Recognition (HCR) is one of the challenging processes. Automatic recognition of handwritten characters is a difficult task. In this paper, we have presented a scheme for offline handwritten Gurmukhi character recognition based on CNN classifier. The system first prepares a skeleton of the character, so that feature information about the character is extracted. CNN based ap...

متن کامل

On the Performance of Devnagari Handwritten Character Recognition

This paper presents the offline handwritten character recognition for Devnagari, a major script of India. The main objective of this work is to develop a handwritten dataset (CPAR-2012) for Devnagari character and further develop a character recognition scheme for benchmark study. The present dataset is a new development in Devnagari optical document recognition. The dataset includes 78,400 sam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015