Evaluation and optimization of chitosan derivatives-based gene delivery system via kidney epithelial cells.

نویسندگان

  • S Safari
  • M H Zarrintan
  • M Soleimani
  • F A Dorkoosh
  • H Akbari
  • B Larijani
  • M Rafiee Tehrani
چکیده

PURPOSE Non-viral vectors have been widely proposed as safer alternatives to viral vectors, and cationic polymers have gained increasing attention because they can form self-assembly with DNA. Chitosan is also considered to be a good candidate for gene delivery systems, since it is already known as a biocompatible, biodegradable, and low toxic material with high cationic potential. However, low solubility and transfection efficiency need to be overcome prior to clinical trial. In this work, we focus on alkyl modified chitosan which might be useful in DNA condensing and efficient gene delivery. METHODS N, N- Diethyl N- Methyl (DEMC) and N- Triethyl Chitosan (TEC) were synthesized from chitosan polymer. In order to optimize the polymers for gene delivery, we used FITC-dextran (FD). Then the optimized polymer concentrations were used for gene delivery. Fluorescent microscope was used, in order to evaluate the polymers' efficiency for gene delivery to human embryonic kidney epithelial cells (HEK 293T). RESULTS This modification increased chitosan's positive charge, thus these chitosan derivatives spontaneously formed complexes with FD, green fluorescence protein plasmid DNA (pEGFP), red fluorescence protein plasmid DNA (pJred) and fluorescent labeled miRNA .RESULTS gained from fluorescent microscope showed that TEC and DEMC were able to transfer FD, DNA and miRNA (micro RNA) to HEK cell line. CONCLUSION We conclude that these chitosan derivatives present suitable characteristics to be used as non-viral gene delivery vectors to epithelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Megalin-Mediated Specific Uptake of Chitosan/siRNA Nanoparticles in Mouse Kidney Proximal Tubule Epithelial Cells Enables AQP1 Gene Silencing

RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulat...

متن کامل

Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line

Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...

متن کامل

Barriers to liposomal gene delivery: from application site to the target

AbstractGene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems...

متن کامل

Barriers to liposomal gene delivery: from application site to the target

AbstractGene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems...

متن کامل

Optimization of conditions for gene delivery system based on PEI

Objective(s): PEI based nanoparticle (NP) due to dual capabilities of proton sponge and DNA binding is known as powerful tool for nucleic acid delivery to cells. However, serious cytotoxicity and complicated conditions, which govern NPs properties and its interactions with cells practically, hindered achievement to high transfection efficiency. Here, we have tried to optimize the properties of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced pharmaceutical bulletin

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2012