Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

نویسندگان

  • Agnieszka Joanna Brodowska
  • Agnieszka Nowak
  • Alina Kondratiuk-Janyska
  • Marcin Piątkowski
  • Krzysztof Śmigielski
چکیده

The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O₃/m³ O₂, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of viruses and bacteria by ozone, with and without sonication.

Selected organisms with public health significance were placed in a reaction chamber for treatment by ozonation, by ozonation and sonication, by sonication, or by sonication during oxygenation. Vesicular stomatitis virus, encephalomyocarditis virus, GDVII virus, Staphylococcus aureus, Pseudomonas fluorescens, Salmonella typhimurium, enteropathogenic Escherichia coli, Vibrio cholerae, and Shigel...

متن کامل

Effect of ozone on the inactivation of indoor airborne viruses with the COVID-19 virus approach: a systematic review

Background: Nowadays, the COVID-19 pandemic has become a global problem that new methods must be used to prevent it. The virus is highly contagious and is mainly transmitted through the air. Ozone is a powerful oxidant that can be used to inactivate a wide range of viruses that may be resistant to other disinfectants. The purpose of this study was to review the use and effect of ozone in inacti...

متن کامل

Modelling the formation of Ozone in the air by using Adaptive Neuro-Fuzzy Inference System (ANFIS) (Case study: city of Yazd, Iran)

The impact of air pollution and environmental issues on public health is one of the main topics studied in manycities around the world. Ozone is a greenhouse gas that contributes to global climate. This study was conducted topredict and model ozone of Yazd in the lower atmosphere by an adaptive neuro-fuzzy inference system (ANFIS). Allthe data were extracted from 721 samples collected daily ove...

متن کامل

Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine.

Ozone is an excellent disinfectant and can even be used to inactivate microorganisms such as protozoa which are very resistant to conventional disinfectants. Proper rate constants for the inactivation of microorganisms are only available for six species (E. coli, Bacillus subtilis spores, Rotavirus, Giardia lamblia cysts, Giardia muris cysts, Cryptosporidium parvum oocysts). The apparent activa...

متن کامل

Disinfection of water containing natural organic matter by using ozone-initiated radical reactions.

Ozone is widely used to disinfect drinking water and wastewater due to its strong biocidal oxidizing properties. Recently, it was reported that hydroxyl radicals ((.)OH), resulting from ozone decomposition, play a significant role in microbial inactivation when Bacillus subtilis endospores were used as the test microorganisms in pH controlled distilled water. However, it is not yet known how na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017