Prediction of protein structure by simulating coarse-grained folding pathways: a preliminary report.

نویسنده

  • Andrés Colubri
چکیده

A set of software tools designed to study protein structure and kinetics has been developed. The core of these tools is a program called Folding Machine (FM) which is able to generate low resolution folding pathways using modest computational resources. The FM is based on a coarse-grained kinetic ab initio Monte-Carlo sampler that can optionally use information extracted from secondary structure prediction servers or from fragment libraries of local structure. The model underpinning this algorithm contains two novel elements: (a) the conformational space is discretized using the Ramachandran basins defined in the local phi-psi energy maps; and (b) the solvent is treated implicitly by rescaling the pairwise terms of the non-bonded energy function according to the local solvent environments. The purpose of this hybrid ab initio/knowledge-based approach is threefold: to cover the long time scales of folding, to generate useful 3-dimensional models of protein structures, and to gain insight on the protein folding kinetics. Even though the algorithm is not yet fully developed, it has been used in a recent blind test of protein structure prediction (CASP5). The FM generated models within 6 A backbone rmsd for fragments of about 60-70 residues of alpha-helical proteins. For a CASP5 target that turned out to be natively unfolded, the trajectory obtained for this sequence uniquely failed to converge. Also, a new measure to evaluate structure predictions is presented and used along the standard CASP assessment methods. Finally, recent improvements in the prediction of beta-sheet structures are briefly described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CyloFold: secondary structure prediction including pseudoknots

UNLABELLED Computational RNA secondary structure prediction approaches differ by the way RNA pseudoknot interactions are handled. For reasons of computational efficiency, most approaches only allow a limited class of pseudoknot interactions or are not considering them at all. Here we present a computational method for RNA secondary structure prediction that is not restricted in terms of pseudok...

متن کامل

Learning To Fold Proteins Using Energy Landscape Theory.

This review is a tutorial for scientists interested in the problem of protein structure prediction, particularly those interested in using coarse-grained molecular dynamics models that are optimized using lessons learned from the energy landscape theory of protein folding. We also present a review of the results of the AMH/AMC/AMW/AWSEM family of coarse-grained molecular dynamics protein foldin...

متن کامل

Coarse-Grained Prediction of RNA Loop Structures

One of the key issues in the theoretical prediction of RNA folding is the prediction of loop structure from the sequence. RNA loop free energies are dependent on the loop sequence content. However, most current models account only for the loop length-dependence. The previously developed "Vfold" model (a coarse-grained RNA folding model) provides an effective method to generate the complete ense...

متن کامل

Protocols for efficient simulations of long-time protein dynamics using coarse-grained CABS model.

Coarse-grained (CG) modeling is a well-acknowledged simulation approach for getting insight into long-time scale protein folding events at reasonable computational cost. Depending on the design of a CG model, the simulation protocols vary from highly case-specific-requiring user-defined assumptions about the folding scenario-to more sophisticated blind prediction methods for which only a protei...

متن کامل

A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding.

Structure-based coarse-grained Gō-like models have been used extensively in deciphering protein folding mechanisms because of their simplicity and tractability. Meanwhile, explicit-solvent molecular dynamics (MD) simulations with physics-based all-atom force fields have been applied successfully to simulate folding/unfolding transitions for several small, fast-folding proteins. To explore the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomolecular structure & dynamics

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2004