Binary codes derived from the Hoffman-Singleton and Higman-Sims graphs
نویسنده
چکیده
Some binary linear codes of length 50 and 100 are constructed using the adjacency matrices of the Hooman-Singleton graph and the Higman-Sims graph. Some of the codes are optimal or nearly optimal for the given length and dimension. The dual codes admit majority logic decoding.
منابع مشابه
The graphs of Hoffman-Singleton, Higman-Sims, McLaughlin and the Hermite curve of degree 6 in characteristic 5
We construct the graphs of Hoffman-Singleton, Higman-Sims and McLaughlin from certain relations on the set of non-singular conics totally tangent to the Hermitian curve of degree 6 in characteristic 5. We then interpret this geometric construction in terms of the subgroup structure of the automorphism group of this Hermitian curve.
متن کاملOn the Graphs of Hoffman-Singleton and Higman-Sims
We propose a new elementary definition of the Higman-Sims graph in which the 100 vertices are parametrised with Z4 × Z5 × Z5 and adjacencies are described by linear and quadratic equations. This definition extends Robertson’s pentagonpentagram definition of the Hoffman-Singleton graph and is obtained by studying maximum cocliques of the Hoffman-Singleton graph in Robertson’s parametrisation. Th...
متن کاملLinear codes with complementary duals related to the complement of the Higman-Sims graph
In this paper we study codes $C_p(overline{{rm HiS}})$ where $p =3,7, 11$ defined by the 3- 7- and 11-modular representations of the simple sporadic group ${rm HS}$ of Higman and Sims of degree 100. With exception of $p=11$ the codes are those defined by the row span of the adjacency matrix of the complement of the Higman-Sims graph over $GF(3)$ and $GF(7).$ We show that these codes ha...
متن کاملDecomposing the Higman-Sims graph into double Petersen graphs
It has been known for some time that the Higman-Sims graph can be decomposed into the disjoint union of two Hoffman-Singleton graphs. In this paper we establish that the Higman-Sims graph can be edge decomposed into the disjoint union of 5 double-Petersen graphs, each on 20 vertices. It is shown that in fact this can be achieved in 36960 distinct ways. It is also shown that these different ways...
متن کاملDouble circulant codes from two class association schemes
Two class association schemes consist of either strongly regular graphs (SRG) or doubly regular tournaments (DRT). We construct self-dual codes from the adjacency matrices of these schemes. This generalizes the construction of Pless ternary Symmetry codes, Karlin binary Double Circulant codes, Calderbank and Sloane quaternary double circulant codes, and Gaborit Quadratic Double Circulant codes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 43 شماره
صفحات -
تاریخ انتشار 1997