A 10S galectin-3–U1 snRNP complex assembles into active spliceosomes
نویسندگان
چکیده
In previous studies, we reported that fractionation of HeLa cell nuclear extracts on glycerol gradients revealed an endogenous ∼10S particle that contained galectin-3 and U1 snRNP and this particle was sufficient to load the galectin polypeptide onto a pre-mRNA substrate. We now document that this interaction between the galectin-3-U1 snRNP particle and the pre-mRNA results in a productive spliceosomal complex, leading to intermediates and products of the splicing reaction. Nuclear extracts were depleted of U1 snRNP with a concomitant loss of splicing activity. Splicing activity in the U1-depleted extract can be reconstituted by the galectin-3-U1 snRNP particle, isolated by immunoprecipitation of the 10S region (fractions 3-5) of the glycerol gradient with anti-galectin-3 antibodies. In contrast, parallel anti-galectin-3 immunoprecipitation of free galectin-3 molecules not in a complex with U1 snRNP (fraction 1 of the same gradient), failed to restore splicing activity. These results indicate that the galectin-3-U1 snRNP-pre-mRNA ternary complex is a functional E complex and that U1 snRNP is required to assemble galectin-3 onto an active spliceosome.
منابع مشابه
A mechanism for incorporation of galectin-3 into the spliceosome through its association with U1 snRNP.
Previously, we showed that galectin-1 and galectin-3 are redundant pre-mRNA splicing factors associated with the spliceosome throughout the splicing pathway. Here we present evidence for the association of galectin-3 with snRNPs outside of the spliceosome (i.e., in the absence of pre-mRNA splicing substrate). Immunoprecipitation of HeLa nuclear extract with anti-galectin-3 resulted in the copre...
متن کاملAccumulation of a novel spliceosomal complex on pre-mRNAs containing branch site mutations.
Pre-mRNA assembles into spliceosomal complexes in the stepwise pathway E-->A-->B-->C. We show that mutations in the metazoan branchpoint sequence (BPS) have no apparent effect on E complex formation but block the assembly of the A complex and the UV cross-linking of U2 small nuclear ribonucleoprotein particle (snRNP) proteins. Unexpectedly, a novel complex, designated E*, assembles on pre-mRNAs...
متن کاملImmunoprecipitation of spliceosomal RNAs by antisera to galectin-1 and galectin-3
We have shown that galectin-1 and galectin-3 are functionally redundant splicing factors. Now we provide evidence that both galectins are directly associated with spliceosomes by analyzing RNAs and proteins of complexes immunoprecipitated by galectin-specific antisera. Both galectin antisera co-precipitated splicing substrate, splicing intermediates and products in active spliceosomes. Protein ...
متن کاملFunctional spliceosomal A complexes can be assembled in vitro in the absence of a penta-snRNP.
Two different models currently exist for the assembly pathway of the spliceosome, namely, the traditional model, in which spliceosomal snRNPs associate in a stepwise, ordered manner with the pre-mRNA, and the holospliceosome model, in which all spliceosomal snRNPs preassemble into a penta-snRNP complex. Here we have tested whether the spliceosomal A complex, which contains solely U1 and U2 snRN...
متن کاملThe transition in spliceosome assembly from complex E to complex A purges surplus U1 snRNPs from alternative splice sites
Spliceosomes are assembled in stages. The first stage forms complex E, which is characterized by the presence of U1 snRNPs base-paired to the 5' splice site, components recognizing the 3' splice site and proteins thought to connect them. The splice sites are held in close proximity and the pre-mRNA is committed to splicing. Despite this, the sites for splicing appear not to be fixed until the n...
متن کامل