Visualization analysis of the vacuole-targeting fungicidal activity of amphotericin B against the parent strain and an ergosterol-less mutant of Saccharomyces cerevisiae.

نویسندگان

  • Chang-Kyung Kang
  • Keiichi Yamada
  • Yoshinosuke Usuki
  • Akira Ogita
  • Ken-ichi Fujita
  • Toshio Tanaka
چکیده

Here, we sought to investigate the vacuole-targeting fungicidal activity of amphotericin B (AmB) in the parent strain and AmB-resistant mutant of Saccharomyces cerevisiae and elucidate the mechanisms involved in this process. Our data demonstrated that the vacuole-targeting fungicidal activity of AmB was markedly enhanced by N-methyl-N″-dodecylguanidine (MC12), a synthetic analogue of the alkyl side chain in niphimycin, as represented by the synergy in their antifungal activities against parent cells of S. cerevisiae. Indifference was observed only with Δerg3 cells, indicating that the replacement of ergosterol with episterol facilitated their resistance to the combined lethal actions of AmB and MC12. Dansyl-labelled amphotericin B (AmB-Ds) was concentrated into normal rounded vacuoles when parent cells were treated with AmB-Ds alone, even at a non-lethal concentration. The additional supplementation of MC12 resulted in a marked loss of cell viability and vacuole disruption, as judged by the fluorescence from AmB-Ds scattered throughout the cytoplasm. In Δerg3 cells, AmB-Ds was scarcely detected in the cytoplasm, even with the addition of MC12, reflecting its failure to normally incorporate across the plasma membrane into the vacuole. Thus, this study supported the hypothesis that ergosterol is involved in the mobilization of AmB into the vacuolar membrane so that AmB-dependent vacuole disruption can be fully enhanced by cotreatment with MC12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Effects on Vacuole-Targeting Fungicidal Activity of Amphotericin B

Invasive fungal infections are major threats for immunocompromised patients as well as for those undergoing cancer chemotherapy. Amphotericin B (AmB), a classical antifungal drug with a polyene macrolide structure, is widely used for the control of serious fungal infections. However, the clinical use of this antifungal drug is limited by its side effects and the emergence of drug-resistant stra...

متن کامل

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

Green synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae

Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...

متن کامل

Isolation, Subtype Determination, Cloning and Expression of HBsAg Gene from an Iranian Carrier in Saccharomyces cerevisiae

The Hepatitis B Surface antigen ( HBsAg) gene was isolated from an Iranian HBeAg positive carrier by PCR. The gene was cloned in pUC19 for sequencing and pYES2 for expression in Saccharomyces cerevisiae, which pNF1 and pDF3 constructs were made respectively. The sequencing data showed that the isolated HBsAg gene shared more than 90% homology with the ayw subtype. The pDF3 was transferred into ...

متن کامل

Comparative in vitro studies on liposomal formulations of amphotericin B and its derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester (MFAME).

N-Methyl-N-D-fructosyl amphotericin B methyl ester (MFAME) is a semisynthetic derivative of the antifungal antibiotic amphotericin B (AMB). In contrast to the parent antibiotic, the derivative is characterised by low toxicity to mammalian cells and good solubility in water of its salts. Comparative studies on biological properties of free MFAME, AMB and their liposomal formulations were perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 159 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2013