Domain formation and permeabilization induced by the saponin α-hederin and its aglycone hederagenin in a cholesterol-containing bilayer.

نویسندگان

  • Joseph Lorent
  • Laurence Lins
  • Òscar Domenech
  • Joelle Quetin-Leclercq
  • Robert Brasseur
  • Marie-Paule Mingeot-Leclercq
چکیده

Saponins and triterpenic acids have been shown to be able to interact with lipid membranes and domains enriched with cholesterol (rafts). How saponins are able to modulate lipid phase separation in membranes and the role of the sugar chains for this activity is unknown. We demonstrate in a binary membrane model composed of DMPC/Chol (3:1 mol/mol) that the saponin α-hederin and its aglycone presenting no sugar chain, the triterpenic acid hederagenin, are able to induce the formation of lipid domains. We show on multilamellar vesicles (MLV), giant unilamellar vesicles (GUV), and supported planar bilayers (SPB) that the presence of sugar units on the sapogenin accelerates domain formation and increases the proportion of sterols within these domains. The domain shape is also influenced by the presence of sugars because α-hederin and hederagenin induce the formation of tubular and spherical domains, respectively. These highly curved structures should result from the induction of membrane curvature by both compounds. In addition to the formation of domains, α-hederin and hederagenin permeabilize GUV. The formation of membrane holes by α-hederin comes along with the accumulation of lipids into nonbilayer structures in SPB. This process might be responsible for the permeabilizing activity of both compounds. In LUV, permeabilization by α-hederin was sterol-dependent. The biological implications of our results and the mechanisms involved are discussed in relation to the activity of saponins and triterpenic acids on membrane rafts, cancer cells, and hemolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of highly curved structures in relation to membrane permeabilization and budding by the triterpenoid saponins, α- and δ-Hederin.

The interactions of triterpenoid monodesmosidic saponins, α-hederin and δ-hederin, with lipid membranes are involved in their permeabilizing effect. Unfortunately, the interactions of these saponins with lipid membranes are largely unknown, as are the roles of cholesterol or the branched sugar moieties (two for α-hederin and one for δ-hederin) on the aglycone backbone, hederagenin. The differen...

متن کامل

α-Hederin Induces Apoptosis, Membrane Permeabilization and Morphologic Changes in Two Cancer Cell Lines Through a Cholesterol-Dependent Mechanism.

In perspective of reducing the mortality of cancer, there is a high interest in compounds which act on multiple cellular targets and therefore prevent the appearance of cancer resistances. Saponins and α-hederin, an oleanane-type saponin, induce cancer cell death through different pathways, including apoptosis and membrane permeabilization. Unfortunately, the mechanism by which cell death is in...

متن کامل

The anticancer effect and mechanism of α-hederin on breast cancer cells.

Natural plant products occupy a very important position in the area of cancer chemotherapy. Many triterpenoid saponins have been proved as potential agents for chemoprevention and therapy of breast cancer. α-hederin, a monodesmosidic triterpenoid saponin distributed in Hedera or Nigella species, displays many biological activities. It is increasingly investigated for its promising anticancer po...

متن کامل

Ultrafast Delivery of Aggregation-Induced Emission Nanoparticles and Pure Organic Phosphorescent Nanocrystals by Saponin Encapsulation.

Saponins are a class of naturally occurring bioactive and biocompatible amphiphilic glycosides produced by plants. Some saponins, such as α-hederin, exhibit unique cell membrane interactions. At concentrations above their critical micelle concentration, they will interact and aggregate with membrane cholesterol to form transient pores in the cell membrane. In this project, we utilized the uniqu...

متن کامل

Synthesis, Formulation, and Adjuvanticity of Monodesmosidic Saponins with Olenanolic Acid, Hederagenin and Gypsogenin Aglycones, and some C‐28 Ester Derivatives†

In an attempt to discover a new synthetic vaccine adjuvant, the glycosylation of hederagenin, gypsogenin, and oleanolic acid acceptors with di- and trisaccharide donors to generate a range of mimics of natural product QS-21 was carried out. The saponins were formulated with phosphatidylcholine and cholesterol, and the structures analyzed by transmission electron microscopy. 3-O-(Manp(1→3)Glcp)h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 30 16  شماره 

صفحات  -

تاریخ انتشار 2014