Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis
نویسندگان
چکیده
Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.
منابع مشابه
Construction of a Minigenome Rescue System for Measles Virus, AIK-c Strain
Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...
متن کاملIsolation of the Gene Coding for Movement Protein from Grapevine Fanleaf Virus
A pair of degenerate primers, GMPF1 and GMPR1, was designed on the basis of alignment of previously reported Grapevine fanleaf virus (GFLV) movement protein (MP) nucleotide sequences from Iran and other parts of the world. cDNA was synthesized by the use of Oligo d(T)18 from total RNA extraction from each diseased grapevine leaf sample and subjected to polymerase chain reaction (PCR) with the d...
متن کاملHeterologous Expression of Potato Virus Y Coat Protein, Isolate Pot187
Background: The advent of recombinant DNA technology has facilitated heterologous expression of proteins from various sources in different host systems including Escherichia coli. If a plant virus coat protein is expressed in the bacterium it can be used as the antigen for antibody preparation. Such a recombinant antigen preparation can be particularly useful where equipment such as ultracentri...
متن کاملGenetic manipulation of non-segmented negative-strand RNA viruses.
Negative-strand RNA viruses are a large and diverse group of enveloped viruses of both medical and economic significance. They are found in hosts from the plant and animal kingdoms, and have a wide range of morphologies, biological properties and genome organizations. A major distinction is made between viruses whose genome consists of a single RNA molecule (order Mononegavirales), including th...
متن کاملStudy on Genetic Diversity of Terminal Fragment Sequence of Isolated Persian Tobacco Mosaic Virus
Tobacco mosaic virus (TMV) is one of the devastating plant viruses in the world that infects more than 200 plant species. Movement protein plays a supportive role in the movement of other plant viruses, and viral coat protein is highly expressed in infected plants and affects replication and movements of TMV. In order to investigate genetic variation in the terminal fragment sequence in Iranian...
متن کامل