uncultured magnetotactic bacteria
نویسندگان
چکیده
Magnetotactic bacteria produce magnetic crystals in organelles called magnetosomes. The bacterial cells may also have phosphorus-containing granules, sulfur globules, or polyhydroxyalkanoate inclusions. In the present study, the ultrastructure and elemental composition of intracellular inclusions from uncultured magnetotactic bacteria collected in a marine environment are described. Magnetosomes contained mainly defect-free, single magnetite crystals with prismatic morphologies. Two types of phosphorus-containing granules were found in magnetotactic cocci. The most common consisted of phosphorus-rich granules containing P, O, and Mg; and sometimes also C, Na, Al, K, Ca, Mn, Fe, Zn, and small amounts of S and Cl were also found. In phosphorus-sulfur-iron granules, P, O, S, Na, Mg, Ca, Fe, and frequently Cl, K, and Zn, were detected. Most cells had two phosphorus-rich granules, which were very similar in elemental composition. In rod-shaped bacteria, these granules were positioned at a specific location in the cell, suggesting a high level of intracellular organization. Polyhydroxyalkanoate granules and sulfur globules were less commonly seen in the cells and had no fixed number or specific location. The presence and composition of these intracellular structures provide clues regarding the physiology of the bacteria that harbor them and the characteristics of the microenvironments where they thrive. [Int Microbiol 2005; 8(2):111-117]
منابع مشابه
Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification.
Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic inform...
متن کاملMultiple evolutionary origins of magnetotaxis in bacteria.
Magnetosomes are intracellular, iron-rich, membrane-enclosed magnetic particles that allow magnetotactic bacteria to orient in the earth's geomagnetic field as they swim. The magnetosomes of most magnetotactic bacteria contain iron oxide particles, but some magnetotactic species contain iron sulfide particles instead. Phylogenetic analyses of small subunit ribosomal RNA sequences showed that al...
متن کاملSingle-Cell Resolution of Uncultured Magnetotactic Bacteria via Fluorescence-Coupled Electron Microscopy
Magnetotactic bacteria (MTB) form intracellular chain-assembled nanocrystals of magnetite or greigite termed magnetosomes. The characterization of magnetosome crystals requires electron microscopy due to their nanoscopic sizes. However, electron microscopy does not provide phylogenetic information for MTB. We have developed a strategy for the simultaneous and rapid phylogenetic and biomineralog...
متن کاملNorth-Seeking Magnetotactic Gammaproteobacteria in the Southern Hemisphere.
UNLABELLED Magnetotactic bacteria (MTB) comprise a phylogenetically diverse group of prokaryotes capable of orienting and navigating along magnetic field lines. Under oxic conditions, MTB in natural environments in the Northern Hemisphere generally display north-seeking (NS) polarity, swimming parallel to the Earth's magnetic field lines, while those in the Southern Hemisphere generally swim an...
متن کاملA cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria.
Magnetotactic bacteria contain magnetosomes--intracellular, membrane-bounded, magnetic nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4))--that cause the bacteria to swim along geomagnetic field lines. We isolated a greigite-producing magnetotactic bacterium from a brackish spring in Death Valley National Park, California, USA, strain BW-1, that is able to biomineralize greigite and ...
متن کامل