Marine Subsurface Microbial Community Shifts Across a Hydrothermal Gradient in Okinawa Trough Sediments

نویسندگان

  • Leah D Brandt
  • Christopher H House
چکیده

Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Archaeal phylotypes in a metal-rich and low-activity deep subsurface sediment of the Peru Basin, ODP Leg

Site 1231 of the Ocean Drilling Project (ODP) was characterized by low concentrations of organic carbon, as well as low cell numbers and biological activity rates. A 16S rRNA survey was performed in order to analyse the microbial community composition of these central oceanic sediments. Archaeal 16S rRNA genes from subsurface sediments at Site 1231 (1.8, 9.0, and 43 mbsf) were affiliated with u...

متن کامل

The effects of crude oil on marine microbial communities in sediments from the Persian Gulf and the Caspian Sea: A microcosm experiment

Changes in the microbial community in response to catastrophic oil spills in marine and fresh water environments have been well documented. Molecular methods provide tools for analyzing the entire bacterial community, covering also those bacteria that have not been cultured in the laboratory. In this study, four different microcosms were set up containing sediments collected from the Persian Gu...

متن کامل

The effects of crude oil on marine microbial communities in sediments from the Persian Gulf and the Caspian Sea: A microcosm experiment

Changes in the microbial community in response to catastrophic oil spills in marine and fresh water environments have been well documented. Molecular methods provide tools for analyzing the entire bacterial community, covering also those bacteria that have not been cultured in the laboratory. In this study, four different microcosms were set up containing sediments collected from the Persian Gu...

متن کامل

Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments

Temperature exerts a first-order control on microbial populations, which constantly adjust the fluidity and permeability of their cell membrane lipids to minimize loss of energy by ion diffusion across the membrane. Analytical advances in liquid chromatography coupled to mass spectrometry have allowed the detection of a stunning diversity of bacterial and archaeal lipids in extreme environments...

متن کامل

Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation.

Genomic markers for anaerobic microbial processes in marine sediments-sulfate reduction, methanogenesis, and anaerobic methane oxidation-reveal the structure of sulfate-reducing, methanogenic, and methane-oxidizing microbial communities (including uncultured members); they allow inferences about the evolution of these ancient microbial pathways; and they open genomic windows into extreme microb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016