The Reciprocity Law for Dedekind Sums via the constant Ehrhart coefficient

نویسنده

  • Matthias Beck
چکیده

These sums appear in various branches of mathematics: Number Theory, Algebraic Geometry, and Topology; they have consequently been studied extensively in various contexts. These include the quadratic reciprocity law ([13]), random number generators ([12]), group actions on complex manifolds ([9]), and lattice point problems ([14], [5]). Dedekind was the first to show the following reciprocity law ([3]):

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ay 2 00 3 The Reciprocity Law for Dedekind Sums via the constant Ehrhart coefficient

These sums appear in various branches of mathematics: Number Theory, Algebraic Geometry, and Topology; they have consequently been studied extensively in various contexts. These include the quadratic reciprocity law ([13]), random number generators ([12]), group actions on complex manifolds ([9]), and lattice point problems ([14], [5]). Dedekind was the first to show the following reciprocity l...

متن کامل

Lattice Points, Dedekind Sums, and Ehrhart Polynomials of Lattice Polyhedra

Let σ be a simplex of RN with vertices in the integral lattice ZN . The number of lattice points of mσ (= {mα : α ∈ σ}) is a polynomial function L(σ,m) of m ≥ 0. In this paper we present: (i) a formula for the coefficients of the polynomial L(σ, t) in terms of the elementary symmetric functions; (ii) a hyperbolic cotangent expression for the generating functions of the sequence L(σ,m), m ≥ 0; (...

متن کامل

The Pick Theorem and the Proof of the Reciprocity Law for Dedekind Sums

This paper is to provide some new generalizations of the Pick Theorem. We first derive a point-set version of the Pick Theorem for an arbitrary bounded lattice polyhedron. Then, we use the idea of a weight function of [2] to obtain a weighted version. Other Pick type theorems known to the author for the integral lattice Z2 are reduced to some special cases of this generalization. Finally, using...

متن کامل

Explicit and Efficient Formulas for the Lattice Point Count in Rational Polygons Using Dedekind - Rademacher Sums

We give explicit, polynomial–time computable formulas for the number of integer points in any two– dimensional rational polygon. A rational polygon is one whose vertices have rational coordinates. We find that the basic building blocks of our formulas are Dedekind–Rademacher sums, which are polynomial–time computable finite Fourier series. As a by–product we rederive a reciprocity law for these...

متن کامل

N ov 2 00 1 Explicit and efficient formulas for the lattice point count in rational polygons using Dedekind – Rademacher sums

We give explicit, polynomial–time computable formulas for the number of integer points in any two– dimensional rational polygon. A rational polygon is one whose vertices have rational coordinates. We find that the basic building blocks of our formulas are Dedekind–Rademacher sums, which are polynomial–time computable finite Fourier series. As a by–product we rederive a reciprocity law for these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999