Anti-Salmonella Activity Modulation of Mastoparan V1—A Wasp Venom Toxin—Using Protease Inhibitors, and Its Efficient Production via an Escherichia coli Secretion System
نویسندگان
چکیده
A previous study highlighted that mastoparan V1 (MP-V1), a mastoparan from the venom of the social wasp Vespula vulgaris, is a potent antimicrobial peptide against Salmonella infection, which causes enteric diseases. However, there exist some limits for its practical application due to the loss of its activity in an increased bacterial density and the difficulty of its efficient production. In this study, we first modulated successfully the antimicrobial activity of synthetic MP-V1 against an increased Salmonella population using protease inhibitors, and developed an Escherichia coli secretion system efficiently producing active MP-V1. The protease inhibitors used, except pepstatin A, significantly increased the antimicrobial activity of the synthetic MP-V1 at minimum inhibitory concentrations (determined against 10⁶ cfu/mL of population) against an increased population (10⁸ cfu/mL) of three different Salmonella serotypes, Gallinarum, Typhimurium and Enteritidis. Meanwhile, the E. coli strain harboring OmpA SS::MP-V1 was identified to successfully secrete active MP-V1 into cell-free supernatant, whose antimicrobial activity disappeared in the increased population (10⁸ cfu/mL) of Salmonella Typhimurium recovered by adding a protease inhibitor cocktail. Therefore, it has been concluded that our challenge using the E. coli secretion system with the protease inhibitors is an attractive strategy for practical application of peptide toxins, such as MP-V1.
منابع مشابه
MP-V1 from the Venom of Social Wasp Vespula vulgaris Is a de Novo Type of Mastoparan that Displays Superior Antimicrobial Activities.
Mastoparans from the venom of social wasps have attracted considerable attention as effective antibiotic candidates. In this study, mastoparan V1 (MP-V1) from Vespula vulgaris was first disclosed to have a peptide amino acid sequence distinct from typical mastoparans and its biochemical properties and antimicrobial effects were compared with those of typical mastoparans MP-L, -X(V) and -B. Circ...
متن کاملBee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains
OBJECTIVES Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to ...
متن کاملMastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins).
Mastoparan, a peptide toxin from wasp venom, is a nonspecific secretagogue. We show here that mastoparan increases the GTPase activity and the rate of nucleotide binding of several purified GTP-binding regulatory proteins (G proteins) whose function is to couple cell-surface receptors to intracellular mediators. Mastoparan accelerated guanosine-5'-(3-O-thiotriphosphate binding and consequent G ...
متن کاملCrystallization and preliminary X-ray diffraction analysis of a eumenine mastoparan toxin: a new class of mast-cell degranulating peptide in the wasp venom.
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized and X-ray diffraction data collected to 2.7 A resolution using a synchrotron-radiation source. Crystals were determined to belong to the space group P6(2)22 (P6(4)22). This is the first mastoparan to be cryst...
متن کاملTHE DESIGN, MODELING AND EVALUATION OF POTENTIAL HIV PROTEASE INHIBITORS USING BLITZ, AN INTERACTIVE COMPUTER GRAPHICS WORKING TOOL
Several nonpeptide small molecules were designed as potential inhibitors of HIV protease and their structures were constructed by computer-aided molecular modeling and docked iwo the active site of HIV protease. Models of the complexes of inhibitors and the HIV protease were refined using nonbonded and H-bonding terms. The refined energy of selected complexes showed that the designed inhib...
متن کامل