Eigenvalue Asymptotics of Perturbed Periodic Dirac Systems in the Slow-decay Limit

نویسندگان

  • KARL MICHAEL SCHMIDT
  • Joseph A. Ball
چکیده

A perturbation decaying to 0 at ∞ and not too irregular at 0 introduces at most a discrete set of eigenvalues into the spectral gaps of a one-dimensional Dirac operator on the half-line. We show that the number of these eigenvalues in a compact subset of a gap in the essential spectrum is given by a quasi-semiclassical asymptotic formula in the slow-decay limit, which for power-decaying perturbations is equivalent to the large-coupling limit. This asymptotic behaviour elucidates the origin of the dense point spectrum observed in spherically symmetric, radially periodic three-dimensional Dirac operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Relativistic Limit of Neutron Beta-Decay Cross-Section in the Presence of Strong Magnetic Field

One of the most important reactions of the URCA that lead to the cooling of a neutron star, is neutron beta-decay ( ). In this research, the energy spectra and wave functions of massive fermions taking into account the Anomalous Magnetic Moment (AMM) in the presence of a strong changed magnetic field are calculated. For this purpose, the Dirac-Pauli equation for charged and neutral fermions is ...

متن کامل

Eigenvalue Statistics for Cmv Matrices: from Poisson to Clock via Random Matrix Ensembles

We study CMV matrices (discrete one-dimensional Dirac-type operators) with random decaying coefficients. Under mild assumptions we identify the local eigenvalue statistics in the natural scaling limit. For rapidly decreasing coefficients, the eigenvalues have rigid spacing (like the numerals on a clock); in the case of slow decrease, the eigenvalues are distributed according to a Poisson proces...

متن کامل

Eigenvalue Statistics for Cmv Matrices: from Poisson to Clock via Cβe

Abstract. We study CMV matrices (a discrete one-dimensional Dirac-type operator) with random decaying coefficients. Under mild assumptions we identify the local eigenvalue statistics in the natural scaling limit. For rapidly decreasing coefficients, the eigenvalues have rigid spacing (like the numerals on a clock); in the case of slow decrease, the eigenvalues are distributed according to a Poi...

متن کامل

Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields

We consider the 3D Pauli operator with nonconstant magnetic field B of constant direction, perturbed by a symmetric matrix-valued electric potential V whose coefficients decay fast enough at infinity. We investigate the low-energy asymptotics of the corresponding spectral shift function. As a corollary, for generic negative V , we obtain a generalized Levinson formula, relating the low-energy a...

متن کامل

Asymptotics and Estimates for Eigenelements of Laplacian with Frequent Nonperiodic Interchange of Boundary Conditions

We consider singular perturbed eigenvalue problem for Laplace operator in a two-dimensional domain. In the boundary we select a set depending on a character small parameter and consisting of a great number of small disjoint parts. On this set the Dirichlet boundary condition is imposed while on the rest part of the boundary we impose the Neumann condition. For the case of homogenized Neumann or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002