Torsion and Bending Periodic Boundary Conditions for Modeling the Intrinsic Strength of Nanowires

نویسندگان

  • Wei Cai
  • William Fong
  • Erich Elsen
  • Christopher R. Weinberger
چکیده

We present a unified approach for atomistic modeling of torsion and bending of nanowires that is free from artificial end effects. Torsional and bending periodic boundary conditions (t-PBC and b-PBC) are formulated by generalizing the conventional periodic boundary conditions (PBC) to cylindrical coordinates. The approach is simpler than the more general Objective Molecular Dynamics formulation because we focus on the special cases of torsion and bending. A simple implementation of these boundary conditions is presented and correctly conserves linear and angular momenta. We also derive the Virial expressions for the average torque and bending moment under these boundary conditions that are analogous to the Virial expression for the average stress in PBC. The method is demonstrated by Molecular Dynamics simulation of Si nanowires under torsion and bending, which exhibit several modes of failure depending on their diameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Bending Algorithm for Field-Driven Molecular Dynamics

A field-driven bending method is introduced in this paper according to the coordinate transformation between straight and curved coordinates. This novel method can incorporate with the periodic boundary conditions in analysis along axial, bending, and transverse directions. For the case of small bending, the bending strain can be compatible with the beam theory. Consequently, it can be regarded...

متن کامل

Coupled Flap-Lag-Torsional Vibration Analysis of Pre-twisted Non-uniform Helicopter Blades

An approximate numerical mthod is presented for analysis and determination of modal characteristics in straight, pretwisted non-unifom helicopter blades. The analysis considers the coupled flapwise bending (out of plane), chordwise bending (in plane), and torsion vibration of both rotating and non-rotating blades. The proposed method is based on the integral expansion of Green functions (struct...

متن کامل

Coupled Flap-Lag-Torsional Vibration Analysis of Pre-twisted Non-uniform Helicopter Blades

An approximate numerical mthod is presented for analysis and determination of modal characteristics in straight, pretwisted non-unifom helicopter blades. The analysis considers the coupled flapwise bending (out of plane), chordwise bending (in plane), and torsion vibration of both rotating and non-rotating blades. The proposed method is based on the integral expansion of Green functions (struct...

متن کامل

Comparison of the Ewald and Wolf methods for modeling electrostatic interactions in nanowires

Ionic compounds pose extra challenges with the appropriate modeling of long-range coulombic interactions. Here, we study the mechanical properties of zinc oxide (ZnO) nanowires using molecular dynamic simulations with Buckingham potential and determine the suitability of the Ewald (Ann. Phys. 1921; 19) and Wolf (J. Chem. Phys. 1999; 110(17):8254–8282) summation methods to account for the long-r...

متن کامل

A Novel Method for Numerical Analysis of 3D Nonlinear Thermo-Mechanical Bending of Annular and Circular Plates with Asymmetric Boundary Conditions Using SAPM

This study is the first report of numerical solution of nonlinear bending analysis for annular and circular plates based on 3D elasticity theory with asymmetric boundary conditions using semi-analytical polynomial method (SAPM). Orthotropic annular and circular plates are subjected to transverse loading and 3D bending analysis in the presence of symmetric and asymmetric boundary conditions is s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008