Calcium Phosphate Bioceramics with Tailored Crystallographic Texture for Controlling Cell Adhesion

نویسندگان

  • Hyunbin Kim
  • Renato P. Camata
  • Sukbin Lee
  • Gregory S. Rohrer
  • Anthony D. Rollett
  • Kristin M. Hennessy
  • Susan L. Bellis
  • Yogesh K. Vohra
چکیده

The orientation distribution of crystalline grains in calcium phosphate coatings produced by pulsed laser deposition was investigated using an X-ray pole-figure diffractometer. Increased laser energy density of a KrF excimer laser in the 4–7 J/cm range leads to the formation of hydroxyapatite grains with the c-axis preferentially aligned perpendicularly to the substrates. This preferred orientation is most pronounced when the plume direction of incidence is normal to the substrate. This crystallographic texture of hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups, and dehydroxylation effects during deposition all seem to play important roles in texture development. Studies of mesenchymal stem cell/biomaterial interactions show that the surfaces with an oriented distribution of hydroxyapatite grains promote significantly better cell adhesion than surfaces with random grain distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium phosphate composite layers for surface-mediated gene transfer.

In this review, the surface-mediated gene transfer system using calcium phosphate composite layers is described. Calcium phosphate ceramics are osteoconductive bioceramics used typically in orthopedic and dental applications. Additionally, calcium phosphate particles precipitated by a liquid-phase process have long been used as a safe and biocompatible transfection reagent in molecular biology....

متن کامل

Toward Smart Implant Synthesis: Bonding Bioceramics of Different Resorbability to Match Bone Growth Rates

Craniofacial reconstructive surgery requires a bioactive bone implant capable to provide a gradual resorbability and to adjust to the kinetics of new bone formation during healing. Biomaterials made of calcium phosphate or bioactive glasses are currently available, mainly as bone defect fillers, but it is still required a versatile processing technique to fabricate composition-gradient bioceram...

متن کامل

Effect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement

In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of   wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...

متن کامل

First-Row Transition Metal Doping in Calcium Phosphate Bioceramics: A Detailed Crystallographic Study

Doped calcium phosphate bioceramics are promising materials for bone repair surgery because of their chemical resemblance to the mineral constituent of bone. Among these materials, BCP samples composed of hydroxyapatite (Ca10(PO₄)₆(OH)₂) and β-TCP (Ca₃(PO₄)₂) present a mineral analogy with the nano-multi-substituted hydroxyapatite bio-mineral part of bones. At the same time, doping can be used ...

متن کامل

Comparative Characteristics of Porous Bioceramics for an Osteogenic Response In Vitro and In Vivo

Porous calcium phosphate ceramics are used in orthopedic and craniofacial applications to treat bone loss, or in dental applications to replace missing teeth. The implantation of these materials, however, does not induce stem cell differentiation, so suitable additional materials such as porous calcium phosphate discs are needed to influence physicochemical responses or structural changes. Rabb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006