Early Embryonic Programming of Neuronal Left/Right Asymmetry in C. elegans

نویسندگان

  • Richard J. Poole
  • Oliver Hobert
چکیده

BACKGROUND Nervous systems are largely bilaterally symmetric on a morphological level but often display striking degrees of functional left/right (L/R) asymmetry. How L/R asymmetric functional features are superimposed onto an essentially bilaterally symmetric structure and how nervous-system laterality relates to the L/R asymmetry of internal organs are poorly understood. We address these questions here by using the establishment of L/R asymmetry in the ASE chemosensory neurons of C. elegans as a paradigm. This bilaterally symmetric neuron pair is functionally lateralized in that it senses a distinct class of chemosensory cues and expresses a putative chemoreceptor family in a L/R asymmetric manner. RESULTS We show that the directionality of the asymmetry of the two postmitotic ASE neurons ASE left (ASEL) and ASE right (ASER) in adults is dependent on a L-/R-symmetry-breaking event at a very early embryonic stage, the six-cell stage, which also establishes the L/R asymmetric placement of internal organs. However, the L/R asymmetry of the ASE neurons per se is dependent on an even earlier anterior-posterior (A/P) Notch signal that specifies embryonic ABa/ABp blastomere identities at the four-cell stage. This Notch signal, which functions through two T box genes, acts genetically upstream of a miRNA-controlled bistable feedback loop that regulates the L/R asymmetric gene-expression program in the postmitotic ASE cells. CONCLUSIONS Our results link adult neuronal laterality to the generation of the A/P axis at the two-cell stage and raise the possibility that neural asymmetries observed across the animal kingdom are similarly established by very early embryonic interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left–Right Asymmetry: Making the Right Decision Early

A left-right asymmetry in neuronal function is specified surprisingly early during embryogenesis in Caenorhabditis elegans. Do early cues influence left-right asymmetries in other animals? How are early cues remembered until late in development?

متن کامل

Embryonic Priming of a miRNA Locus Predetermines Postmitotic Neuronal Left/Right Asymmetry in C. elegans

The mechanisms by which functional left/right asymmetry arises in morphologically symmetric nervous systems are poorly understood. Here, we provide a mechanistic framework for how functional asymmetry in a postmitotic neuron pair is specified in C. elegans. A key feature of this mechanism is a temporally separated, two-step activation of the lsy-6 miRNA locus. The lsy-6 locus is first "primed" ...

متن کامل

An Innexin-Dependent Cell Network Establishes Left-Right Neuronal Asymmetry in C. elegans

Gap junctions are widespread in immature neuronal circuits, but their functional significance is poorly understood. We show here that a transient network formed by the innexin gap-junction protein NSY-5 coordinates left-right asymmetry in the developing nervous system of Caenorhabditis elegans. nsy-5 is required for the left and right AWC olfactory neurons to establish stochastic, asymmetric pa...

متن کامل

Left-right asymmetry in C. elegans intestine organogenesis involves a LIN-12/Notch signaling pathway.

The C. elegans intestine is a simple tube consisting of a monolayer of epithelial cells. During embryogenesis, cells in the anterior of the intestinal primordium undergo reproducible movements that lead to an invariant, asymmetrical 'twist' in the intestine. We have analyzed the development of twist to determine how left-right and anterior-posterior asymmetries are generated within the intestin...

متن کامل

microRNA function in left-right neuronal asymmetry: perspectives from C. elegans

Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006