CYP4F enzymes are the major enzymes in human liver microsomes that catalyze the O-demethylation of the antiparasitic prodrug DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime].

نویسندگان

  • Michael Zhuo Wang
  • Janelle Y Saulter
  • Etsuko Usuki
  • Yen-Ling Cheung
  • Michael Hall
  • Arlene S Bridges
  • Greg Loewen
  • Oliver T Parkinson
  • Chad E Stephens
  • James L Allen
  • Darryl C Zeldin
  • David W Boykin
  • Richard R Tidwell
  • Andrew Parkinson
  • Mary F Paine
  • James Edwin Hall
چکیده

DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime] is biotransformed to the potent antiparasitic diamidine DB75 [2,5-bis(4-amidinophenyl) furan] by sequential oxidative O-demethylation and reductive N-dehydroxylation reactions. Previous work demonstrated that the N-dehydroxylation reactions are catalyzed by cytochrome b5/NADH-cytochrome b5 reductase. Enzymes responsible for catalyzing the DB289 O-demethylation pathway have not been identified. We report an in vitro metabolism study to characterize enzymes in human liver microsomes (HLMs) that catalyze the initial O-demethylation of DB289 (M1 formation). Potent inhibition by 1-aminobenzotriazole confirmed that M1 formation is catalyzed by P450 enzymes. M1 formation by HLMs was NADPH-dependent, with a Km and Vmax of 0.5 microM and 3.8 nmol/min/mg protein, respectively. Initial screening showed that recombinant CYP1A1, CYP1A2, and CYP1B1 were efficient catalysts of M1 formation. However, none of these three enzymes was responsible for M1 formation by HLMs. Further screening showed that recombinant CYP2J2, CYP4F2, and CYP4F3B could also catalyze M1 formation. An antibody against CYP4F2, which inhibited both CYP4F2 and CYP4F3B, inhibited 91% of M1 formation by HLMs. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, effectively inhibited M1 formation by HLMs. Inhibition studies with ebastine and antibodies against CYP2J2 suggested that CYP2J2 was not involved in M1 formation by HLMs. Additionally, ketoconazole preferentially inhibited CYP4F2, but not CYP4F3B, and partially inhibited M1 formation by HLMs. We conclude that CYP4F enzymes (e.g., CYP4F2, CYP4F3B) are the major enzymes responsible for M1 formation by HLMs. These findings indicate that, in human liver, members of the CYP4F subfamily biotransform not only endogenous compounds but also xenobiotics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unusual dehydroxylation of antimicrobial amidoxime prodrugs by cytochrome b5 and NADH cytochrome b5 reductase.

Furamidine is an effective antimicrobial agent; however, oral potency of furamidine is poor. A prodrug of furamidine, 2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime (DB289), has greatly improved oral potency. DB289 is transformed to furamidine via O-demethylation, and N-dehydroxylation reactions with four intermediate metabolites formed. The O-demethylation reactions have been shown to be ...

متن کامل

Human enteric microsomal CYP4F enzymes O-demethylate the antiparasitic prodrug pafuramidine.

CYP4F enzymes, including CYP4F2 and CYP4F3B, were recently shown to be the major enzymes catalyzing the initial oxidative O-demethylation of the antiparasitic prodrug pafuramidine (DB289) by human liver microsomes. As suggested by a low oral bioavailability, DB289 could undergo first-pass biotransformation in the intestine, as well as in the liver. Using human intestinal microsomes (HIM), we ch...

متن کامل

Cyp4f Enzymes Are the Major Enzymes in Human Liver Microsomes That Catalyze the O-demethylation of the Antiparasitic Prodrug Db289

Primary laboratory of origin: Division of Molecular Pharmaceutics, School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, mzw, jys, asb, rrt, mfp, jeh XenoTech LLC, Lenexa, KS 66219, eu, gl, otp, ap Department of Chemistry, Georgia State University, Atlanta, GA 30302, ces, dwb Department of In Vitro Metabolism, Huntingdon Life Sciences Ltd., Woolley Road, Al...

متن کامل

Pharmacokinetics and metabolism of the prodrug DB289 (2,5-bis[4-(N-methoxyamidino)phenyl]furan monomaleate) in rat and monkey and its conversion to the antiprotozoal/antifungal drug DB75 (2,5-bis(4-guanylphenyl)furan dihydrochloride).

DB289 (pafuramidine maleate; 2,5-bis[4-(N-methoxyamidino)phenyl]furan monomaleate) is a prodrug of DB75 (furamidine dihydrochloride; 2,5-bis(4-guanylphenyl)furan dihydrochloride), an aromatic dication related to pentamidine that has demonstrated good efficacy against African trypanosomiasis, Pneumocystis carinii pneumonia, and malaria, but lacks adequate oral availability. The pharmacokinetics ...

متن کامل

Roles for the Trypanosoma brucei P2 transporter in DB75 uptake and resistance.

A novel trypanocide, 2,5-bis(4-amidinophenyl)furan (DB75), in its prodrug amidoxime-derivative form, 2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime (DB289), is in trials as the first orally administered drug for human African trypanosomiasis. DB75 is a diamidine. Resistance to some diamidines correlates to loss of uptake via the P2 aminopurine transporter. We show here that uptake of DB75 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 34 12  شماره 

صفحات  -

تاریخ انتشار 2006