Tensor Field Visualization Using a Metric Interpretation

نویسندگان

  • Ingrid Hotz
  • Louis Feng
  • Hans Hagen
  • Bernd Hamann
  • Kenneth Joy
چکیده

This chapter introduces a visualization method specifically tailored to the class of tensor fields with properties similar to stress and strain tensors. Such tensor fields play an important role in many application areas such as structure mechanics or solid state physics. The presented technique is a global method that represents the physical meaning of these tensor fields with their central features: regions of compression or expansion. The method consists of two steps: first, the tensor field is interpreted as a distortion of a flat metric with the same topological structure; second, the resulting metric is visualized using a texture-based approach. The method supports an intuitive distinction between positive and negative eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature

We propose a method for visualizing two-dimensional symmetric positive definite tensor fields using the Heat Kernel Signature (HKS). The HKS is derived from the heat kernel and was originally introduced as an isometry invariant shape signature. Each positive definite tensor field defines a Riemannian manifold by considering the tensor field as a Riemannian metric. On this Riemmanian manifold we...

متن کامل

Tensor Glyph Warping – Visualizing Metric Tensor Fields using Riemannian Exponential Maps

The Riemannian exponential map, and its inverse the Riemannian logarithm map, can be used to visualize metric tensor fields. In this chapter we first derive the well-known metric sphere glyph from the geodesic equations, where the tensor field to be visualized is regarded as the metric of a manifold. These glyphs capture the appearance of the tensors relative to the coordinate system of the hum...

متن کامل

On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...

متن کامل

New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada

Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004