A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA.
نویسندگان
چکیده
Escherichia coli is the best-characterized organism with respect to posttranscriptional modifications of its ribosomal RNA (rRNA). It is presently believed that all the modified nucleotides have been identified, primarily on the basis of two detection methods; modification-induced inhibition of the enzyme reverse transcriptase or analysis by combined HPLC and electrospray ionization mass spectrometry. Comparison of data from these different approaches reveals a disagreement regarding modification of C2501 in E. coli 23S rRNA. A. Bakin and J. Ofengand previously reported the detection of a modification at this site based on a reverse transcriptase assay. J.A. McCloskey and coworkers could not confirm the existence of such a modification using an electrospray ionization mass spectrometry approach. C2501 is therefore generally considered unmodified. We have used a strategy involving isolation of a specific rRNA fragment from E. coli 23S rRNA followed by Matrix Assisted Laser Desorption/Ionization mass spectrometry and tandem mass spectrometry to investigate this controversy. Our data reveal a novel 16-Da partial modification at C2501. We believe that the data reported here clarify the above discrepancy, because a minor partial modification detected in a reverse transcriptase assay would not necessarily be detected by the original mass spectrometry approach. The level of modification was furthermore monitored in different growth situations, and we found a significant positive regulation in stationary phase cells. C2501 is universally conserved and implicated in structure folds very close to the catalytic center of the ribosome. Moreover, several antibiotics bind to nucleotides in this region, which altogether make a modification at this site interesting.
منابع مشابه
The last rRNA methyltransferase of E. coli revealed: the yhiR gene encodes adenine-N6 methyltransferase specific for modification of A2030 of 23S ribosomal RNA.
The ribosomal RNA (rRNA) of Escherichia coli contains 24 methylated residues. A set of 22 methyltransferases responsible for modification of 23 residues has been described previously. Herein we report the identification of the yhiR gene as encoding the enzyme that modifies the 23S rRNA nucleotide A2030, the last methylated rRNA nucleotide whose modification enzyme was not known. YhiR prefers pr...
متن کاملReconstitution of peptide bond formation with Escherichia coli 23S ribosomal RNA domains.
It was recently demonstrated that peptide bond formation can occur using an Escherichia coli naked 23S ribosomal RNA without any of the ribosomal proteins. Here, the six domains of the 23S ribosomal RNA were individually synthesized and shown to be capable, when complexed together, of stimulating the reaction. Omission and addition experiments indicated that the activity could be reconstituted ...
متن کاملStructural characterization of U*-1915 in domain IV from Escherichia coli 23S ribosomal RNA as 3-methylpseudouridine.
Mass spectrometry-based methods have been used to study post-transcriptional modification in the 1900-1974 nt segment of domain IV in 23S rRNA of Escherichia coli, a region which interacts with domain V in forming the three- dimensional structure of the peptidyl transferase center within the ribosome. A nucleoside constituent of M r 258 (U*)which occurs at position 1915, within the highly modif...
متن کاملIdentification of Escherichia coli through analysis of 16S rRNA and 16S-23S rRNA internal transcribed spacer region sequences
A bacterial strain, designated BzDS03 was isolated from water sample, collected from Dal Lake Srinagar. The strain was characterized by using 16S ribosomal RNA gene and 16S-23S rRNA internal transcribed spacer region sequences. Phylogenetic analysis showed that 16S rRNA sequence of the isolate formed a monophyletic clade with genera Escherichia. The closest phylogenetic relative was Escherichia...
متن کاملFormation of all stable RNA species in Escherichia coli by posttranscriptional modification.
The kinetics of accumulation of the known stable RNA species (23S, 16S, and 5S rRNA and tRNA) in Escherichia coli C122 were monitored by polyacrylamide gel electrophoresis of purified cellular RNA, following termination of brief pulse labeling with (32)P-orthophosphate. Isotopically labeled stable RNA species appear only after a time lag, while total cellular RNA and the ostensible precursors t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 10 6 شماره
صفحات -
تاریخ انتشار 2004