Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end–binding microtubule destabilizer
نویسندگان
چکیده
The Dis1/XMAP215 family of microtubule-associated proteins conserved from yeast to mammals is essential for cell division. XMAP215, the Xenopus member of this family, has been shown to stabilize microtubules in vitro, but other members of this family have not been biochemically characterized. Here we investigate the properties of the Saccharomyces cerevisiae homologue Stu2p in vitro. Surprisingly, Stu2p is a microtubule destabilizer that binds preferentially to microtubule plus ends. Quantitative analysis of microtubule dynamics suggests that Stu2p induces microtubule catastrophes by sterically interfering with tubulin addition to microtubule ends. These results reveal both a new biochemical activity for a Dis1/XMAP215 family member and a novel mechanism for microtubule destabilization.
منابع مشابه
Stu2p binds tubulin and undergoes an open-to-closed conformational change
Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat-containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two s...
متن کاملCrystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding.
Members of the XMAP215/Dis1 family of microtubule-associated proteins (MAPs) are essential for microtubule growth. MAPs in this family contain several 250 residue repeats, called TOG domains, which are thought to bind tubulin dimers and promote microtubule polymerization. We have determined the crystal structure of a single TOG domain from the Caenorhabditis elegans homolog, Zyg9, to 1.9 A reso...
متن کاملAn unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation
Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission ...
متن کاملAurora B puts chromosomes in their place
Aurora B puts chromosomes in their place mall molecule inhibitors of Aurora B activity, characterized by Hauf et al. (page 281) and Ditchfield et al. (page 267), reveal that the mammalian kinase and its budding yeast counterpart, Ipl1, have similar functions. Without Aurora B, mistakes in kinetochore–chromosome interactions go uncorrected. Early evidence of a function for the Aurora family in c...
متن کاملRegulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP.
The molecular mechanisms by which microtubule-associated proteins (MAPs) regulate the dynamic properties of microtubules (MTs) are still poorly understood. We review recent advances in our understanding of two conserved families of MAPs, the XMAP215/Dis1 and CLASP family of proteins. In vivo and in vitro studies show that XMAP215 proteins act as microtubule polymerases at MT plus ends to accele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 161 شماره
صفحات -
تاریخ انتشار 2003