A Combinatorial Correspondence Related to Göllnitz’ (big) Partition Theorem and Applications
نویسنده
چکیده
In recent work, Alladi, Andrews and Gordon discovered a key identity which captures several fundamental theorems in partition theory. In this paper we construct a combinatorial bijection which explains this key identity. This immediately leads to a better understanding of a deep theorem of Göllnitz, as well as Jacobi’s triple product identity and Schur’s partition theorem.
منابع مشابه
A Combinatorial Proof of Andrews’ Partition Functions Related to Schur’s Partition Theorem
We construct an involution to show equality between partition functions related to Schur’s second partition theorem.
متن کاملA four parameter generalization of Göllnitz's (big) partition theorem
We announce a new four parameter partition theorem from which the (big) theorem of Göllnitz follows by setting any one of the parameters equal to 0. This settles a problem of Andrews who asked whether there exists a result that goes beyond the partition theorem of Göllnitz. We state a four parameter q-series identity (key identity) which is the generating function form of this theorem. In a sub...
متن کاملThe Dual of Göllnitz’s (big) Partition Theorem*
A Rogers-Ramanujan (R-R) type identity is a q-hypergeometric identity in the form of an infinite (possibly multiple) series equals an infinite product. The series is the generating function of partitions whose parts satisfy certain difference conditions, whereas the product is the generating function of partitions whose parts usually satisfy certain congruence conditions. For a discussion of a ...
متن کاملVector ultrametric spaces and a fixed point theorem for correspondences
In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
متن کاملVector Partition Functions and Generalized Dahmen-micchelli Spaces
This is the first of a series of papers on partition functions and the index theory of transversally elliptic operators. In this paper we only discuss algebraic and combinatorial issues related to partition functions. The applications to index theory will appear in [4]. Here we introduce a space of functions on a lattice which generalizes the space of quasi–polynomials satisfying the difference...
متن کامل