Nonparametric Modal Regression

نویسندگان

  • Yen-Chi Chen
  • Christopher R. Genovese
  • Ryan J. Tibshirani
  • Larry Wasserman
چکیده

Modal regression estimates the local modes of the distribution of Y given X = x, instead of the mean, as in the usual regression sense, and can hence reveal important structure missed by usual regression methods. We study a simple nonparametric method for modal regression, based on a kernel density estimate (KDE) of the joint distribution of Y and X. We derive asymptotic error bounds for this method, and propose techniques for constructing confidence sets and prediction sets. The latter is used to select the smoothing bandwidth of the underlying KDE. The idea behind modal regression is connected to many others, such as mixture regression and density ridge estimation, and we discuss these ties as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Robust Modal Local Polynomial Regression

Modal local polynomial regression uses double kernel as the loss function to gain some robustness in the nonparametric regression. Current researches use the standard normal density function as the weight function to down-weigh the influences from the outliers. This paper extends the standard normal weight function to a general class weight functions. All the theoretical properties found by usi...

متن کامل

Local Modal Regression.

A local modal estimation procedure is proposed for the regression function in a non-parametric regression model. A distinguishing characteristic of the proposed procedure is that it introduces an additional tuning parameter that is automatically selected using the observed data in order to achieve both robustness and efficiency of the resulting estimate. We demonstrate both theoretically and em...

متن کامل

Slow Rotating Bearing Condition Assessment Based on Bayesian Gaussian Mixture Regression

This paper presents the condition monitoring of slowly rotating bearing using experimental data from acoustic emission signal. The condition monitoring methodology is based on a nonlinear parametric Bayesian technique, Gaussian Mixture Regression which is expected to accurately diagnose bearing damage under fluctuating load and speed conditions. The proposed model has the ability to model high ...

متن کامل

A graphical analysis of the interrelationships among waterborne asbestos, digestive system cancer and population density.

Five statistical procedures were used to partial the correlation between waterborne asbestos and digestive site cancer for the putative effects of population density. These include: analysis based on a data subset with roughly homogeneous population density; standard residual analysis (partial correlation); conditional probability integral transformation; analysis based upon ranked data, and us...

متن کامل

Fast Nonparametric Conditional Density Estimation

Conditional density estimation. The idea of conditional density estimation is to construct a density estimate f̂(y|x) for a dependent variable y, conditional on a vector of variables x. This can be seen as a generalization of regression, where instead of estimating the expected value E(y|x) alone, we instead model the full density. This is especially important for multi-modal densities, where th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014