Fourier-Bessel rotational invariant eigenimages

نویسندگان

  • Zhizhen Zhao
  • Amit Singer
چکیده

We present an efficient and accurate algorithm for principal component analysis (PCA) of a large set of two-dimensional images and, for each image, the set of its uniform rotations in the plane and its reflection. The algorithm starts by expanding each image, originally given on a Cartesian grid, in the Fourier-Bessel basis for the disk. Because the images are essentially band limited in the Fourier domain, we use a sampling criterion to truncate the Fourier-Bessel expansion such that the maximum amount of information is preserved without the effect of aliasing. The constructed covariance matrix is invariant to rotation and reflection and has a special block diagonal structure. PCA is efficiently done for each block separately. This Fourier-Bessel-based PCA detects more meaningful eigenimages and has improved denoising capability compared to traditional PCA for a finite number of noisy images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier-Bessel analysis of polar space symmetric photonic crystal; resonator modes and heterostructure

A Fourier-Bessel equivalent of the plane wave technique is employed to theoretically analyze a circular photonic crystal structure containing both radial and rotational periodicity. The presence of the 12-fold rotational symmetry in the dielectric profile results in a 12-times reduction in the order of the matrix diagonalized when cast using the Fourier-Bessel basis functions. In addition, the ...

متن کامل

Accelerating Matching and Learning of Eigenspace method

We propose a method for accelerating the matching and learning processes of the eigenspace method for rotation invariant template matching (RITM). To achieve efficient matching using eigenimages, it is necessary to learn 2D-Fourier transform of eigenimages before matching. Little attentions has been paid to speeding up the learning process, which is important for applications in which a templat...

متن کامل

Quaternion Bessel-Fourier moments and their invariant descriptors for object reconstruction and recognition

In this paper, the quaternion Bessel-Fourier moments are introduced. The significance of phase information in quaternion Bessel-Fourier moments is investigated and an accurate estimation method for rotation angle is described. Furthermore, a new set of invariant descriptors based on the magnitude and the phase information of quaternion Bessel-Fourier moments is derived. Experimental results sho...

متن کامل

Fast Eigen Matching Accelerating Matching and Learning of Eigenspace method

We propose Fast Eigen Matching, a method for accelerating the matching and learning processes of the eigenspace method for rotation invariant template matching (RITM). Correlation-based template matching is one of the basic techniques used in computer vision. Among them, rotation invariant template matching (RITM), which locates a known template in a query irrespective of the template’s transla...

متن کامل

Estimates for the Generalized Fourier-Bessel Transform in the Space L2

Some estimates are proved for the generalized Fourier-Bessel transform in the space (L^2) (alpha,n)-index certain classes of functions characterized by the generalized continuity modulus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 2013