Swelling Kinetics of Disulfide Cross-Linked Microgels

نویسندگان

  • Kyle N. Plunkett
  • Mary L. Kraft
  • Qing Yu
  • Jeffrey S. Moore
چکیده

Hydrogels of 2-hydroxyethyl methacrylate (HEMA) cross-linked with N,N′-cystaminebis(acrylamide) (CBA) were prepared inside microchannels using an in situ photopolymerization for the study of chemical-responsive microgels. By chemically reducing disulfide bonds with dithiothreitol (DTT), the cross-link density of the hydrogel network decreased, leading to an observable swelling of the hydrogel. To maximize swelling response, acrylic acid (AA) was copolymerized with HEMA and CBA to afford a pH/chemically-responsive hydrogel. The combination of a decrease in cross-link density and a driving force for swelling (deprotonation of AA) led to a fast swelling response. Hydrogel swelling switched between halfand first-order kinetics depending on hydrogel composition and de-cross-linking conditions. A direct relationship between the hydrogel swelling rate and the rate of cross-link cleavage was found. A linear dependence between the square of the swelling rate and DTT concentration suggests the possibility of using responsive hydrogels as a quantitative chemical sensor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responsive Azobenzene-Containing Polymers and Gels

The photoviscosity effect in aqueous solutions of novel poly(4-methacryloyloxyazobenzene-co-N,N-dimethyl acrylamide) (MOAB-DMA) was demonstrated. The observed significant reduction in the zero-shear viscosity upon UVirradiation of MOAB-DMA aqueous solutions was due to the dissociation of the interchain azobenzene aggregates. Such phenomena can be advantageously used in photoswitchable fluidic d...

متن کامل

Preparation of monodisperse poly(N-isopropylacrylamide) microgel particles with homogenous cross-link density distribution.

Monodisperse microgel latex with homogeneous cross-link density distribution within the particles was prepared by feeding the monomer and cross-linker into the reaction mixture in a regulated way during the polymerization. To determine the appropriate monomer feeding parameters, the kinetics of the particle formation was investigated by HPLC. The swelling and optical characteristics of the prep...

متن کامل

Design of Asymmetric Particles Containing a Charged Interior and a Neutral Surface Charge: Comparative Study on in Vivo Circulation of Polyelectrolyte Microgels

Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydroge...

متن کامل

Monodisperse Thermoresponsive Microgels with Tunable Volume-Phase Transition Kinetics

Stimuli-sensitive hydrogel microspheres or microgels are polymeric particles that consist of cross-linked three-dimensional networks. They shrink or swell significantly by expelling or absorbing large amounts of water in response to external stimuli, such as changes in temperature, pH, electric or magnetic fields. The chemical composition of the microgel determines the stimulus that can trigger...

متن کامل

Investigation of the Swelling Response and Loading of Ionic Microgels with Drugs and Proteins: The Dependence on Cross-Link Density

The pH and NaCl induced swelling response and drug and protein loading of poly(methacrylic acid-co-acrylic acid) microgels (4-10 μm diameter) were measured as a function of cross-link density. The swelling ratio (Q) of the microgels increased linearly from 2 to 12 when the mole fraction of crosslinking monomer decreased from 0.25 to 0.10 (at pH’s > 5.3). In the presence of 5 M NaCl (at pH’s > 5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003