Prevention of postischemic cardiac injury by the orally active iron chelator 1,2-dimethyl-3-hydroxy-4-pyridone (L1) and the antioxidant (+)-cyanidanol-3.
نویسندگان
چکیده
In this study, we investigated the role of oxygen-derived free radicals and iron in mediating myocardial injury during ischemia and reperfusion. Iron is of special interest because it may enhance tissue injury during ischemia and reperfusion by catalyzing the formation of highly reactive hydroxyl radicals (by modified Haber-Weiss or Fenton reactions). Rat hearts, perfused by the Langendorff method, were subjected to global ischemia (15 minutes at 37 degrees C) and reperfusion. The effects of two iron chelators, 1,2-dimethyl-3-hydroxy-4-pyridone (L1) and 5-hydroxy-2-hydroxymethyl-4-pyrone (kojic acid), and one antioxidant, (+)-cyanidanol-3, on contractile function, coronary flow, lactate dehydrogenase release, and lactate production were studied. The combination of these iron chelators is of special importance because L1 is known to prevent lipid peroxidation, induced by ADP/Fe3+ and NADPH in microsomes, in contrast to kojic acid. We found significant protection of contractile function (apex displacement) during reperfusion with 50 microM L1 and 20 microM (+)-cyanidanol-3 (p less than 0.01, n = 6), whereas no protection was found with 50 microM kojic acid (n = 6). Measurements of lactate dehydrogenase release during reperfusion showed a protective pattern similar to that found for heart contractile function, although 50 microM kojic acid also showed a significantly lower lactate dehydrogenase release during the first 10 minutes of reperfusion. No differences in coronary resistance or lactate release were found between the various groups. Our findings indicate that iron and oxygen-derived free radicals are important in the pathogenesis of postischemic reperfusion injury probably because of the formation of hydroxyl radicals.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Complexation of iron with the orally active decorporation drug L1 (3-hydroxy-1,2-dimethyl-4-pyridinone).
The stability constants for the Fe(III) complexes of the orally active iron decorporation drug L1 (3-hydroxy-1,2-dimethyl-4-pyridinone) have been determined by potentiometric titration [glass electrode, 25.0 degrees C, mu = 0.15 mol/L (isotonic) NaCl]. A simple computer model of blood plasma (citrate 100 mumol/L, transferrin 37 mumol/L) has been used to compare the Fe(III) binding efficacies in...
متن کاملChelation therapy in patients with thalassemia using the orally active iron chelator deferiprone (L1).
BACKGROUND AND OBJECTIVE Excessive hemosiderosis is the main reason for the multi-organ failure observed in multitransfused patients. Deferiprone (1,2-dimethyl-3-hydroxy-pyridine-4-one, L1) is an orally active iron chelator mainly excreted via urine. We conducted a study in order to determine the efficacy and safety of L1 in Greek thalassemic patients. DESIGN AND METHODS A group of 11 thalass...
متن کاملProtoporphyria induced by the orally active iron chelator 1,2-diethyl-3-hydroxypyridin-4-one in C57BL/10ScSn mice.
Administration in the drinking water of the orally-active iron chelator 1,2-diethyl-3-hydroxypyridin-4-one (CP94) to C57BL/10ScSn mice caused the development of hepatic protoporphyria. This was detected after 1 week and continued as long as the chelator was given (15 weeks). The more hydrophilic 1,2-dimethyl- and 1-hydroxyethyl,2-ethyl-analogues (CP20 and CP102) were also tested, but they were ...
متن کاملReduction of tissue iron stores and normalization of serum ferritin during treatment with the oral iron chelator L1 in thalassemia intermedia.
In patients with thalassemia intermedia in whom hyperabsorption of iron may result in serious organ dysfunction, an orally effective iron-chelating drug would have major therapeutic advantages, especially for the many patients with thalassemia intermedia in the Third World. We report reduction in tissue iron stores and normalization of serum ferritin concentration after 9-month therapy with the...
متن کاملBiliary and urinary metabolic profiles of 1,2-diethyl-3-hydroxypyridin-4-one (CP94) in the rat.
This study compares the biliary and urinary metabolic profiles of 1,2-diethyl-3-hydroxypyridin-4-one (CP94), an orally active iron chelator, in the normal rat. Surprisingly, CP94 was found to form two phase II metabolites, the 3-O- and 4-O-glucuronides. These glucuronides accounted for 38 and 28% of the administered CP94 dose, in bile and urine, respectively. Unchanged CP94 accounted for 5% of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 80 1 شماره
صفحات -
تاریخ انتشار 1989