Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish.
نویسندگان
چکیده
Neuropilin-1 (NRP1) is a cell-surface receptor for both vascular endothelial growth factor(165) (VEGF(165)) and class 3 semaphorins that is expressed by neurons and endothelial cells. NRP1 is required for normal developmental angiogenesis in mice. The zebrafish is an excellent system for analyzing vascular development. Zebrafish intersegmental vessels correspond to mammalian capillary sprouts, whereas the axial vessels correspond to larger blood vessels, such as arteries. The zebrafish NRP1 gene (znrp1) was isolated and when overexpressed in cells, zNRP1 protein was a functional receptor for human VEGF(165). Whole-mount in situ hybridization showed that transcripts for znrp1 during embryonic and early larval development were detected mainly in neuronal and vascular tissues. Morpholino-mediated knockdown of zNRP1 in embryos resulted in vascular defects, most notably impaired circulation in the intersegmental vessels. Circulation via trunk axial vessels was not affected. Embryos treated with VEGF receptor-2 kinase inhibitor had a similar intersegmental vessel defect suggesting that knockdown of zNRP1 reduces VEGF activity. To determine whether NRP1 and VEGF activities were interdependent in vivo, zNRP1 and VEGF morpholinos were coinjected into embryos at concentrations that individually did not significantly inhibit blood vessel development. The result was a potent inhibition of blood cell circulation via both intersegmental and axial vessels demonstrating that VEGF and NRP1 act synergistically to promote a functional circulatory system. These results provide the first physiological demonstration that NRP1 regulates angiogenesis through a VEGF-dependent pathway.
منابع مشابه
In vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies
Objective(s): Emergence of resistant tumor cells to the current therapeutics is the main hindrance in cancer treatment. Combination therapy, which mixes two or more drugs, is a way to overcome resistant problems of cancer cells to current treatments. Nanobodies are promising tools in cancer therapy due to their high affinity as well as high penetration to tumor sites....
متن کاملNeuropilin-1 regulates attachment in human endothelial cells independently of vascular endothelial growth factor receptor-2.
Neuropilin-1 (NRP-1) is a type 1 membrane protein that binds the axon guidance factors belonging to the class-3 semaforin family. In endothelial cells, NRP-1 serves as a co-receptor for vascular endothelial growth factor (VEGF) and regulates VEGF receptor 2 (VEGFR-2)-dependent angiogenesis. Although gene-targeting studies documenting embryonic lethality in NRP-1 null mice have demonstrated a cr...
متن کاملIn vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies
Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...
متن کاملNeuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization.
Vascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1 in organization of endothelial cells i...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor
Semaphorin 3A (Sema3A), a known inhibitor of axonal sprouting, also alters vascular patterning. Here we show that Sema3A selectively interferes with VEGFbut not bFGF-induced angiogenesis in vivo. Consistent with this, Sema3A disrupted VEGFbut not bFGF-mediated endothelial cell signaling to FAK and Src, key mediators of integrin and growth factor signaling; however, signaling to ERK by either gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 16 شماره
صفحات -
تاریخ انتشار 2002